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Abstract. We discuss the problem of defining basic nonlinear elliptic operators
of second order (real and complex Monge-Ampère operators, more general Hessian
operators) for natural classes of non-smooth functions associated with them (convex,
plurisubharmonic, etc.) and survey recent developments in this area.

1. Introduction. One of the basic facts of the classical potential theory is that a
Laplacian of an arbitrary, not necessarily smooth, subharmonic function can be well
defined as a nonnegative Radon measure. The aim of this article is to describe the
problem of defining, for natural classes of non-smooth functions, the most important
nonlinear elliptic operators of second order: the real and complex Monge-Ampère
operators and more general Hessian operators. The problem of defining them stems
from the fact that we cannot multiply distributions. Our perspective here will be the
real theory, so when discussing for example the complex Monge-Ampère operator
we will treat it in fact as a real operator defined on real-valued functions on domains
of Cn ' R2n (but of course it depends in a crucial way on the complex structure).

First, we will present a rather general definition of an elliptic operator of second
order and associate with it a natural class of admissible functions. Since all the
problems discussed here are of purely local character, we will not specify open sets
in Rn where considered functions are defined (we may treat them as germs at the
origin). For smooth u defined on an open subset of Rn we consider operators of the
form

F(u) = F (D2u),

where D2u = (∂2u/∂xi∂xj) is the (real) Hessian matrix of u and F is a smooth
real-valued function defined on the space S of all real symmetric n × n matrices.
We first define the cone of admissible matrices:

SF := {A ∈ S : F (A + B) ≥ 0 for all B ∈ S+},

where
S+ := {A ∈ S : A ≥ 0}.
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The operator F is called elliptic (in the weak sense) if

(
∂F

∂aij
(A)

)
∈ S+, A ∈ SF .

The definition of the matrix (∂F/∂aij(A)) is a little bit ambiguous, for S is only a
linear subspace of Rn2

and it is not a priori clear how one should extend functions
defined only on S. More precisely, we can say that (∂F/∂aij(A)) is the symmetric
matrix uniquely determined by

tr

[(
∂F

∂aij
(A)

)
B

]
=

d

dt
F (A + tB)

∣∣∣∣
t=0

, B ∈ S.

Note that F is elliptic if and only if

F (A + B) ≥ F (A), A ∈ SF , B ∈ S+.

We will say that a smooth function u is admissible for F if its Hessian D2u is an
admissible matrix at every point.

If the set of admissible matrices SF is a convex cone then one can easily define
a notion of a non-smooth admissible function. Namely, we may then write

(2) SF =
⋂

B∈Ŝ
{A ∈ S : tr(AB) ≥ 0},

where Ŝ is a subset of S+ (note that Ŝ is usually not uniquely determined), and we
say that an upper-semicontinuous u ∈ L1

loc is admissible if

tr(D2uB) =
∑

i,j

bij
∂2u

∂xi∂yj
≥ 0, B = (bij) ∈ Ŝ

(in the distributional sense). Moreover, every admissible u can be approximated
pointwise from above by smooth admissible functions, because for ρ ≥ 0 and B ∈ Ŝ
we have tr(D2(u ∗ ρ)B) = tr(D2uB) ∗ ρ ≥ 0 and thus the standard regularizations
u ∗ ρ are also admissible.

However, it is not at all clear how to define F(u) for non-smooth admissible u
and as we will see it is not so simple (sometimes even not possible) even for the
most basic operators.

2. The real Monge-Ampère operator. It is the model example of a nonlinear
elliptic operator of second order:

(3) M(u) = det D2u.

One can show that SM = S+ and that it is of the form (2), where by Ŝ we may
take for example the whole S+. Hence, the admissible functions for M are precisely
convex functions.
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The usefulness of the Monge-Ampère operator in geometry is mainly caused by
the fact that the Gauss curvature of a hypersurface of Rn+1 which is a graph of a
function u of n variables is given by

K =
detD2u

(1 + |∇u|2)n/2+1
.

Defining M for non-smooth convex functions gives in particular the notion of Gauss
curvature (as a measure) of an arbitrary convex hypersurface.

It is clear that the right hand-side of (3) cannot be directly defined in terms
of distributions, since we cannot multiply them. The construction of the measure
M(u) for arbitrary convex u is due to A.D. Aleksandrov. The starting point is the
following observation: if u, defined on a convex domain Ω ∈ Rn, is smooth and
strongly convex (i.e. D2u > 0) then ∇u, treated as a mapping Ω → Rn, is injective
and diffeomorphic and its Jacobian is precisely det D2u. For every Borel subset
E ⊂ Ω we have therefore

(4)
∫

E

det D2u dλ = λ(∇u(E))

(λ denotes the Lebesgue measure). Moreover, the set∇u(E) (called gradient image)
can be naturally defined also for non-smooth convex functions by means of affine
supporting functions:

∇u(x) := {y ∈ Rn : u(x) + 〈· − x, y〉 ≤ u}, ∇u(E) :=
⋃

x∈E

∇u(x).

It follows from the properties of convex functions that at every x the set ∇u(x) is
non-empty. If u is differentiable at x then of course ∇u(x) consists of one vector.

It remains to show that the right hand-side of (4) defines a measure on the
σ-algebra of Borel sets. The key is the following result:

Theorem 1 (Aleksandrov [1]). For arbitrary convex u the set of y ∈ Rn that
belong to gradient images of more than one point is of Lebesgue measure zero.

One can namely show (see also [19]) that if ỹ ∈ ∇u(x) ∩ ∇u(x̃) for some x 6= x̃,
then the conjugate of u

v(y) := sup
x

(〈x, y〉 − u(x)), y ∈ Rn,

is not differentiable at ỹ. But it is well known that convex functions are differen-
tiable almost everywhere.

An alternative, more analytic way of constructing the measure M(u) will be
presented below when we discuss the complex Monge-Ampère operator (see also
[19]).

3. The complex Monge’a-Ampère operator. For smooth u defined on an
open subset of Cn we set

(5) M c(u) := det
(

∂2u

∂zj∂zk

)
.
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This operator appears in many areas of complex analysis and geometry. In a spec-
tacular way it was used by Yau [23] in the proof of the Calabi conjecture and in the
construction of a Kähler-Einstein metric on compact Kähler manifolds with either
negative or vanishing first Chern class. Its usefulness is caused by the fact that the
Ricci curvature of a Kähler metric (gjk̄) is given by

Rpq̄ = − ∂2

∂zp∂zq
log det(gjk̄),

and (gjk̄) is locally a complex Hessian of a certain smooth function.
First note that M c is a real operator in the sense that if u is real-valued then

so is M c(u). We may therefore consider notions defined in the introduction. Every
real symmetric 2n× 2n matrix we write in the form

A =
(

P Q
Qt R

)
,

where P, Q, R are real n× n matrices such that P and R are symmetric. Then

F (A) = 4−n det[P + R + i(Q−Qt)].

One can show that SMc consists of A with

P + R + i(Q−Qt) ≥ 0,

which is equivalent to (
P + R Qt −Q
Q−Qt P + R

)
≥ 0.

The set SMc is of the form (2): by Ŝ we may take the set of all nonnegative
hermitian matrices X + iY , which we identify with matrices of the form

(
X −Y
Y X

)
∈ S+.

Admissible functions for M c are thus characterized by the condition
(

∂2u

∂zj∂zk

)
≥ 0,

that is we get precisely the class plurisubharmonic functions.
To define the operator M c for non-smooth plurisubharmonic functions is espe-

cially important in the pluripotential theory, which is a counterpart of the classical
potential theory in several complex variables - see e.g. [2], [13], [18]. The complex
Monge-Ampère operator in many respects behaves similarly as the real one and
one could expect to define M c(u) as a nonnegative measure for every non-smooth
admissible u. It turns out not to be the case. It was first shown by Shiffman and
Taylor (see [20]). A simpler example was proposed by Kiselman [17]: the function

u(z) = (− log |z1|)1/n(|z2|2 + · · ·+ |zn|2 − 1)
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is plurisubharmonic in a neighborhood of the origin, smooth away from the set
{z1 = 0}, but M c(u) is not integrable near {z1 = 0}.

We see therefore that the real and complex Monge-Ampère operators have some
crucial differences. As described in [6], attempts to apply the real methods in the
complex case too closely may sometimes fail.

The complex Monge-Ampére operator can however be defined for certain crucial
non-smooth plurisubharmonic functions, which is sufficient in most applications in
pluripotential theory. It was achieved by Bedford and Taylor: in [3] for continuous
and in [5] for locally bounded functions. Contrary to the geometric construction
of Alexandrov (which cannot be repeated in the complex case), the construction
of Bedford and Taylor is analytic. Its main tool is the theory of complex cur-
rents created mostly by Lelong. We will now describe the main ideas behind this
construction.

For p, q = 0, 1, . . . , n− 1 we consider complex forms of bidegree (p, q):

T =
∑

J,K

TJKdzJ ∧ dzK ,

where the summation is over indices of the form J = (j1, . . . , jp), K = (k1, . . . , kq),
where 1 ≤ j1 < · · · < jp ≤ n, 1 ≤ k1 < · · · < kq ≤ n, and dzJ = dzj1 ∧ · · · ∧ dzjp ,
dzK = dzk1 ∧ · · · ∧ dzkq (see e.g. [15]). If the coefficients TJK are distributions then
we call T a current, if they are of order zero (that is they are complex measures)
then we will say that T is a current of order zero. For a current T we define the
operators ∂ and ∂:

∂T =
∑

J,K

n∑

j=1

∂TJK

∂zj
dzj ∧ dzJ ∧ dzK ,

∂T =
∑

J,K

n∑

j=1

∂TJK

∂zj
dzj ∧ dzJ ∧ dzK .

The obtained current ∂T is bidegree (p+1, q) and ∂T is of bidegree (p, q +1). Note
that ∂ + ∂ = d. Since d2 = 0, it follows that ∂2 = 0, ∂

2
= 0 and ∂∂ + ∂∂ = 0. If we

now set dc := i(∂ − ∂) then ddc = 2i∂∂. One can easily check that for smooth u

(ddcu)n = ddcu ∧ · · · ∧ ddcu = 4nn! det
(

∂2u

∂zj∂zk

)
dλ.

Therefore, the complex Monge-Ampère operator can be written in terms of the
operators d, dc, which is very useful when integrating by parts.

For a locally bounded plurisubharmonic u and k = 1, . . . , n, Bedford and Taylor
[5] inductively defined the current (ddcu)k := ddc(u(ddc)k−1) and showed that it is
of order zero. Note that we can multiply locally bounded functions by currents of
order zero (because their coefficients are complex measures) and we will of course
get a current of order zero. One of the basic results is the continuity of the operator
(ddc)k for decreasing sequences:

Theorem 2 (Bedford, Taylor [5]). If uj is a sequence of plurisubharmonic
functions decreasing to u ∈ L∞loc then (ddcuj)k converges weakly (that is in the
weak ∗ toopology) to (ddcu)k.
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Every z ∈ Cn can be written in the form z = x + iy, where x, y ∈ Rn. If
the function u(z) = u(x + iy) does not depend on y then it is plurisubharmonic
(as a function of z) if and only if it is convex (as a function of x). In other
words, we may treat convex functions as continuous plurisubharmonic functions.
The Bedford-Taylor definition thus gives in particular another definition of the real
Monge-Ampère operator. As shown in [19], both definitions are equivalent.

4. The domain of definition of the complex Monge-Ampère operator.
As we have already noticed, M c(u) cannot be well defined as a measure for arbitrary
plurisubharmonic u (but it can be if u is for example locally bounded). Thus the
question arises to determine when M c(u) can be well defined. It was first studied
in depth by Cegrell in [12] where he introduced a class E (defined globally on
sufficiently regular domains in Cn) and proved its relation to this problem. Another,
local approach was proposed in [7] (for n = 2) and [9] (for arbitrary n).

In order to explain what we precisely mean by the (local) domain of definition D
of M c, let us first analyze two examples due to Cegrell. In [10] he showed that there
exists a sequence uj of smooth plurisubharmonic functions converging weakly (and
thus in Lp

loc for every p < ∞, see e.g. [16]) to a smooth plurisubharmonic u such
that M c(uj) does not converge even weakly to M c(u). This shows in particular that
the monotone convergence appearing in Bedford-Taylor’s Theorem 2 is crucial and
cannot be replaced with weak convergence (and equivalently with Lp

loc convergence).
On the other hand, following [11] consider the unbounded plurisubharmonic

function
u(z) = 2 log |z1 . . . zn|

and two sequences of smooth plurisubharmonic functions decreasing to u

uj(z) = log(|z1 . . . zn|2 + 1/j),

vj(z) = log(|z1|2 + 1/j) + · · ·+ log(|zn|2 + 1/j).

One can check that M c(uj) converges weakly to 0 but M c(vj) to πnδ0, where by
δ0 we denote the point mass.

In view of the above examples the following definition of the subclass D of the
class of plurisubharmonic functions is completely natural: we say that a plurisub-
harmonic function u belongs to D if there exists a nonnegative Radon measure µ
such that for every sequence of smooth plurisubharmonic functions uj decreasing
to u the sequence M c(uj) converges weakly to µ. Note that this definition is of a
purely local character (we really consider germs of functions) and thus the sequence
uj may be defined on a smaller open set than u. For u ∈ D we set M c(u) = µ (it
is obvious that for a given u there can be at most one such a measure µ).

From the first of the above Cegrell examples it is clear that we cannot replace the
monotone convergence in the definition of D with the weak convergence. From the
second example it follows that we must consider all approximating sequences uj and
it is not enough to check the convergence only for one sequence. One can can easily
show (see [7]) that D is the maximal subclass of the class of plurisubharmonic
functions where the operator M c can be defined, so that (5) holds for smooth
functions and M c is continuous for decreasing sequences.

It turns out that one can completely characterize the class D. Let us first consider
the case n = 2. As noticed already by Bedford and Taylor in [3] (see also [4]), if u
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is smooth in Ω ⊂ C2 then integration by parts gives

∫
ϕ(ddcu)2 = −

∫
du ∧ dcu ∧ ddcϕ, ϕ ∈ C∞0 (Ω).

It follows that that the complex Monge-Ampère operator in C2 can be well de-
fined for functions belonging to the Sobolev space W 1,2

loc . It is not obvious however
whether, firstly, so defined operator is continuous for decreasing sequences of func-
tions and, secondly, these are all plurisubharmonic functions for which the operator
can be well defined. Both questions were answered in the affirmative in [7] and we
thus have the following precise description of the domain of definition of the complex
Monge-Ampère operator in C2:

Theorem 3 ([7]). For n = 2 the class D consists precisely of plurisubharmonic
functions belonging to W 1,2

loc .

The characterization of D for n ≥ 3 turns out to be more complicated, both in
terms of the statement of the result as well as its proof.

Theorem 4 ([9]). For a negative plurisubharmonic u the following are equivalent
i) u ∈ D;
ii) For all sequences of smooth plurisubharmonic functions uj decreasing to u

the sequence (ddcuj)n is weakly bounded;
iii) For all sequences of smooth plurisubharmonic functions uj decreasing to u

the sequences

(6) |uj |n−2−pduj ∧ dcuj ∧ (ddcuj)p ∧ ωn−p−1, p = 0, 1, . . . , n− 2,

(ω := ddc|z|2 is the Kähler form in Cn) are weakly bounded;
iv) There exists a sequence of smooth plurisubharmonic functions uj decreasing

to u such that the sequences (6) are weakly bounded.

From the equivalence of i) and ii) it follows that if there exists a decreasing
approximating sequence whose Monge-Ampère measures are not weakly convergent
then we can find another sequence whose Monge-Ampère measures are not even
weakly bounded. The importance of condition iii) is that, contrary to ii) (by the
Cegrell example from [11]), we can replace the quantifier for all with there exists.
This means that for a given u it is enough to check weak boundedness of (6) for
just one approximating sequence, for example for the regularizations of u.

The following example shows that the condition of local weak boundedness of
(6) is in fact optimal: for q = 1, . . . , n− 1 let

u(z) := log(|z1|2 + · · ·+ |zq|2), uj(z) := log(|z1|2 + · · ·+ |zq|2 + 1/j).

Then (6) is locally weakly bounded for p 6= q − 1 (it vanishes for p ≥ q), but not
for p = q − 1.

Theorem 4 and its proof can be used to prove the following important property
of D which does not seem to be an easy consequence of the definition:

Theorem 5 ([9]). If u ∈ D and v is plurisubharmonic and such that u ≤ v then
v ∈ D.
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One of the steps in the proof of Theorems 3 and 4 was to show that actually
both classes D and E coincide (only then does it follow that to belong to E is in
fact a local property) and then use a result from [12] on the continuity of M c on E .

5. The real Hessian operator. For m = 1, . . . , n we consider the elementary
symmetric functions

Sm(λ) =
∑

1≤i1<···<im≤n

λi1 . . . λim
, λ = (λ1, . . . , λn) ∈ Rn,

Sm(A) = Sm(λ(A)), A ∈ S,

where λ(A) = (λ1, . . . , λn) are the eigenvalues of the matrix A. The functions Sm

are determined by

(λ1 + t) . . . (λn + t) =
n∑

m=0

Sm(λ)tn−m, det(A + tI) =
n∑

m=0

Sm(A)tn−m, t ∈ R,

where we set S0 := 1. The real Hessian operator is defined by

(7) Hm(u) = Sm(D2u).

We get H1 = ∆ and Hn = M .
One can show that

SHm = {A ∈ S : Sj(A) ≥ 0, j = 1, . . . , m},

that Hm jest is an elliptic operator, and that SHm satisfies (2) with

Ŝ = {(∂Sm/∂aij(A)) ∈ S+ : A ∈ SHm}.

(The necessary multi-linear algebra is provided by [14].) We thus have admissible
functions for Hm, they are called m-convex. Of course, 1-convex means subhar-
monic and n-convex is equivalent to convex.

The operator Hm for m-convex functions was defined by Trudinger and Wang.
First in [21] they did it for continuous m-convex functions and showed the continuity
for uniformly convergent sequences. Moreover, they showed that for m > n/2
all m-convex functions are continuous and that the weak convergence (which for
subharmonic functions is equivalent to convergence in Lp

loc for p < n/(n−2)) implies
the local uniform convergence. However, for m ≤ n/2 there exist discontinuous m-
convex functions. In general, we have the following deep result:

Theorem 6 (Trudinger, Wang [22]). For every m-convex u one can uniqely
define a measure Hm(u) so that (7) holds for smooth functions and the operator is
continuous for weakly convergent sequences.

We have already seen that an analogous result is false for the complex Monge-
Ampère operator - by the Cegrell example [10] it does not even hold for smooth
plurisubharmonic functions. Interestingly, both the Bedford- Taylor analytic meth-
ods [3], [5], and the Cegrell example [10] turned out to be inspiring for Trudinger
and Wang, although their result is purely real and not true in the complex case.
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The geometric construction of Alexandrov is of no use for the Hessian operator
(even the definition of m-convex functions is analytic and there is no equivalent
geometric definition as is the case for m = n). In the proof of Theorem 6 successive
integration by parts was used, partly similar to the one from [5].

Important examples of m-convex functions are the fundamental solutions for the
operator Hm (i.e. Hm(E) = δ0):

E(x) = λ−1/m
n

(
n

m

)−1/m{ m
2m−n |x|(2m−n)/m, m 6= n/2,

log |x|, m = n/2,

where λn denotes the volume of the unit ball in Rn. Note that E is not bounded if
m ≤ n/2. One has

E ∈ W 1,q
loc ⇔ q <

nm

n−m

and, for m ≤ n/2,
E ∈ Lp

loc ⇔ p <
nm

n− 2m
.

It follows from [22] that in both cases the fundamental solution is an extremal
example:

Theorem 7 (Trudinger, Wang [22]). Every m-convex function is in W 1,q
loc for

every q < nm/(n−m).

From the Sobolev embedding theorem we then immediately obtain:

Corollary 8. If m ≤ n/2 then m-convex functions are in Lp
loc for every p <

nm/(n− 2m).

6. The complex Hessian operator. It is defined in the same way as in the
real case:

Hc
m(u) = Sm

((
∂2u

∂zj∂zk

))
, m = 1, . . . , n,

for functions u on open subsets of Cn (of course Sm is real for hermitian matrices,
since their eigenvalues are real). The operator Hc

m can also be expressed in terms
of the operators d and dc:

(ddcu)m ∧ ωn−m = 4n−m/2m! Sm

((
∂2u

∂zj∂zk

))
dλ.

By Hm denote the set of all (1, 1)-forms with constant coefficients

β =
n∑

j,k=1

ajki dzj ∧ dzk, ajk ∈ C,

such that the matrix (ajk) is hermitian (i.e. β = β) and βj ∧ ωn−j ≥ 0 for
j = 1, . . . , m. One can show (see [8], the proofs are based on [14]) that

β1 ∧ · · · ∧ βm ∧ ωn−m ≥ 0, β1, . . . , βm ∈ Hm,
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and that u is admissible for Hc
m if and only if

(ddcu)j ∧ ωn−j ≥ 0, j = 1, . . . ,m,

which is equivalent to

ddcu ∧ β1 ∧ · · · ∧ βm−1 ∧ ωn−m ≥ 0, β1, . . . , βm−1 ∈ Hm.

Similarly as we did for the complex Monge-Ampère operator we could state these
conditions in terms of the real matrix D2u and define the sets SHc

m
and Ŝ.

Admissible functions for Hc
m we will call m-subharmonic. (Perhaps a more logical

term m-plurisubharmonic is already in use and denotes a completely different class
of functions.) Again, 1-subharmonic means subharmonic and n-subharmonic means
plurisubharmonic. Note that, similarly as before, if u(x + iy) does not depend on
y then u is m-convex (with respect to x ∈ Rn) if and only if it is m-subharmonic
(with respect to z = x+ iy ∈ Cn). The m-convex functions can be therefore treated
as special cases of m-subharmonic functions.

We have the following fundamental solution for Hc
m:

Ec(z) = λ
−1/m
2n

(
n

m

)−1/m{ − m
n−m |z|−2(n−m)/m, m < n,

log |z|, m = n.

One can easily check that

Ec ∈ W 1,q
loc ⇔ q <

2nm

2n−m
, Ec ∈ Lp

loc ⇔ p <
nm

n−m
,

and we can ask if the optimal results, similar to Theorem 7 and Corollary 8, hold
in this case as well.

On one hand, we cannot expect a result similar to Theorem 7, that is that all
m-subharmonic functions are in W 1,q

loc for every q < 2nm
2n−m . For log |z1| is plurisub-

harmonic (and thus m-subharmonic for every m) but log |z1| /∈ W 1,2
loc . In general,

gradient estimates similar to Theorem 7 do not hold in the complex case.
On the other hand, the following conjecture seems plausible:

Conjecture. Every m-subharmonic function is in Lp
loc for all p < nm/(n−m).

First note that a necessary (but not sufficient if 1 < m < n) condition for
a function to be m-subharmonic is that it is subharmonic on every n − m + 1-
dimensional complex subspace. Integrating along such subspaces one then easily
concludes that m-subharmonic functions are in Lp

loc for every

p <
2(n−m + 1)

2(n−m + 1)− 2
=

n−m + 1
n−m

(note that 2k is the real dimension of a k-dimensional complex subspace). This
trivial estimate was improved in [8] for p < n/(n−m).

It is perhaps interesting to compare the real Hessian operator Hn in Cn ∼= R2n

with the complex Monge-Ampère operator M c and the corresponding classes of
admissible functions. We obtain two nonlinear logarithmic potential theories, real
and complex, that are very different from each other. In particular, Theorem 6
holds for the real one and fails, even in a much weaker form, for the complex one.
The latter depends heavily on the choice of a complex structure on R2n, whereas
the real one is independent of it.
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