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Bergman Completeness

Q bounded domain in C"
H?(Q) = O(Q) N L2(Q)
Ka(:,-) Bergman kernel

f(w) :/ fKa(,w)d\, weQ, feHQ)
Q

Ka(w) = Ka(w, w)
= sup{|f(w)]*> : f € H*(Q), |If]| <1}

Q is called Bergman complete if it is complete w.r.t. the Bergman
metric Bo = i00 log Ko



Kobayashi Criterion (1959) If

. |f(W)|2 2
| _0, feHQ
S Ka(wy ~ % FEH @),

then € is Bergman complete.
The opposite is not true even for n =1 (Zwonek, 2001).

Kobayashi Criterion easily follows using the embedding
L2 Q3 w— [Ka(-, w)] € P(H*(Q))
and the fact that t*wgs = Bq.

Since ¢ is distance decreasing,

K
dist8(z, w) > arccos M
Ka(z)Ka(w)



Some Pluripotential Theory

Q is called hyperconvex if it admits a negative plurisubharmonic
(psh) exhaustion function (u € PSH™(2) s.th. u =0 on 09).

Demailly (1985) If Q is pseudoconvex with Lipschitz boundary then
it is hyperconvex.

Pluricomplex Green function For a pole w € Q we set
Ga(,w) =G, =sup{ve PSH (Q): v<log|-—w|+ C}

Lempert (1981) Q convex = G symmetric

Demailly (1985) Q hyperconvex = €% € C(Q x Q)
Open Problem e% ¢ C(Q x Q\ Asq)

Equivalently: G(-, wx) — 0 loc. uniformly as wy — 0Q7?
True if 9Q € C? (Herbort, 2000)



Demailly (1985) If Q is hyperconvex then G,, = Gq(:, w) is the
unique solution to

u e PSH(Q) N C(Q\ {w})
(dd€u)" = (27)"d,
u=0on 09
u<log|-—w|+C

B. (1995) If Q is hyperconvex then 3! u = uq s.th.

u€e PSH(Q)N C(Q)
(ddu)" =1dX
u =0 on 09Q.

Open Problem u € C*(Q)

Pogorelov (1971) True for the analogous solution of the real
Monge-Ampere equation (for any bounded convex domain in R”
without any regularity assumptions).



B.-Y. Chen, Pflug - B. (1998) / Herbort (1999)
Hyperconvex domains are Bergman complete

Herbort If € is pseudoconvex then

|f(w)[?
Ka(w)

< cn / If2d), weQ, feH* Q).

{Gu<-1}
Corollary IingQ AM{Gw < —1})=0 = Qis Bergman complete
w—

Proposition If Q is hyperconvex then
Il n — 0
Wl[gQHGwHL Q)

Sketch of proof ||Gy||n = [ |Gw|"(dd uq)"

< n!IIUQHZol/QIUQ\(ddCGw)" < C(n, A(9Q)) |ug(w)]



Lower Bound for the Bergman Distance

Diederich-Ohsawa (1994), B. (2005) If Q is pseudoconvex with C?
boundary then
log 0"
dist§ (-, w) > ogig_lj
Cloglogdg
where dq(z) = distq(z,00Q).
Pluripotential theory is the main tool in proving this estimate, in
particular we have the following:

B. (2005) If Q is pseudoconvex and z, w € Q are such that
{G, < —-1}n{G, < -1} =10

then
dist8(z,w) > ¢, > 0.

Open Problem dist§(-,w) > L log 5"



From Herbort's estimate

[f(w)[? / 2 2
<, | |f]dN, weQ, feH(Q),
Ky = | 17 ()
{Gu<-1}
for f =1 we get
1
KQ(W) >

~ a\{Gy < —1})°

To find the optimal constant c, here turns out to have very
interesting consequences!

Herbort (1999) ¢, = 1 4 4e*3tR* where Q C B(z, R)
(Main tool: Hormander's estimate for 0)

* ds

B. (2005) ¢, = (1 + 4/Ei(n))?, where Ei(t) :/ l

(Main tool: Donnelly-Fefferman'’s estimate for 0)



Suita Conjecture

D bounded domain in C
co(z) = exp lin (Go(¢.2) — log] — 2]
(logarithmic capacity of C\ D w.r.t. z)

cpldz| is an invariant metric (Suita metric)

(log cp)2z
2

CuerD|dz\ = — c
D

Suita Conjecture (1972):  Curve,|q, < —1

=" if D is simply connected

e “<" if D is an annulus (Suita)

Enough to prove for D with smooth boundary

e “=" on 9D if D has smooth boundary



Curvey|dz) for D = {e7> < |z| < 1} as a function of log |z




Curv(iog Kp),s|dz12 for D = {€7 < |z| < 1} as a function of log ||
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Therefore the Suita conjecture is equivalent to

(logcp) =mKp  (Suita)

C% < 7TKD.

Ohsawa (1995) observed that it is really an extension problem: for
z € D find holomorphic f in D such that f(z) =1 and

2 v
ING2E (0 (@)

Using the methods of the Ohsawa-Takegoshi extension theorem he
showed the estimate
c3 < CnKp

with C = 750.

C=2 (B., 2007)
C =1.95388... (Guan-Zhou-Zhu, 2011)



Ohsawa-Takegoshi extension theorem (1987)

with optimal constant (B., 2013)

0eDCC, QcC1xD, Q pseudoconvex,

v € PSH(Q)

f holomorphic in Q' := QN {z, = 0}

Then there exists a holomorphic extension F of f to Q such that

/QF|2e_“"d)\ < 7CD7(T0)2 | IfPeean.

For n =1 and ¢ = 0 we get the Suita conjecture.

Main tool: Hérmander's estimate for 0
B.-Y. Chen (2011) proved that the Ohsawa-Takegoshi theorem
(without optimal constant) follows form Hormander's estimate.



Tensor Power Trick

We have
1

Kalw) 2 6, <=1

where ¢, = (1 + 4/Ei(n))>.
Take m > 0 and set Q := Q™ C C"™, w := (w,...,w). Then

Ka(w) = (Ka(w))™,  Aanm({Gw < —1}) = (A2n({Gw < —1}H)™.

Therefore )
KQ(W) 2 1/m
but
lim c,%,/nm = 2",

m—>00



Repeating this argument for any sublevel set we get

Theorem 1 Assume €2 is pseudoconvex in C". Then for a > 0 and
w e Q

1
Ko(w) > e2n\({ G, < —a})’

Lempert recently noticed that this estimate can also be proved
using Berndtsson's result on positivity of direct image bundles.

What happens when a — oo?

For n =1 we get K > c3/m (another proof of Suita conjecture).

For n > 1 and 2 convex using Lempert’s theory one can obtain:

Theorem 2 If 2 is a convex domain in C" then for w € Q



Mahler Conjecture

K - convex symmetric body in R”
K':={y €eR":x-y <1 forevery x € K}

Mahler volume := A(K)A(K”)

Mahler volume is an invariant of the Banach space defined by K:
it is independent of linear transformations and of the choice of
inner product.

Santald Inequality (1949) Mahler volume is maximized by balls
Mahler Conjecture (1938) Mahler volume is minimized by cubes
Hansen-Lima bodies: starting from an interval they are produced
by taking products of lower dimensional HL bodies and their duals.
n = 2: square

n = 3: cube & octahedron

n=4: ...



Bourgain-Milman (1987) There exists ¢ > 0 such that

AK)MK) > c”i—?.

Mahler Conjecture: ¢ =1
G. Kuperberg (2006) ¢ = 7 /4

Nazarov (2012)
> equivalent SCV formulation of the Mahler Conjecture via the
Fourier transform and the Paley-Wiener theorem
» proof of the Bourgain-Milman Inequality (c = (7/4)3) using
Hormander's estimate for 0



K - convex symmetric body in R”
Nazarov: consider Tk := intK + iR"” C C". Then

a1 nl An(K')
() Ty < KO0 = 55

Therefore
m\3n 4"

An(K)An(K') > <Z)

H.
To show the lower bound we can use Theorem 2:

1
K0 = 5 )

Proposition I7,(0) C K + iK)

4
In particular, Aap( ITK ( )

Conjecture Aon(17,(0)) < (4) (An(K))?

™



