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Suita Conjecture

D domain in C

cD(z) := exp lim
ζ→z

(GD(ζ, z)− log |ζ − z |)

(logarithmic capacity of C \ D w.r.t. z)

cD |dz | is an invariant metric (Suita metric)

CurvcD |dz| = − (log cD)zz̄
c2
D

Suita Conjecture (1972): CurvcD |dz| ≤ −1

• “=” if D is simply connected

• “<” if D is an annulus (Suita)

• Enough to prove for D with smooth boundary

• “=” on ∂D if D has smooth boundary

We are essentially asking whether the curvature of the Suita metric
satisfies maximum principle.
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CurvcD |dz| for D = {e−5 < |z | < 1} as a function of log |z |
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CurvKD |dz|2 for D = {e−10 < |z | < 1} as a function of −2 log |z |
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Curv(log KD )zz̄ |dz|2 for D = {e−5 < |z | < 1} as a function of log |z |



∂2

∂z∂z̄
(log cD) = πKD (Suita),

KD(z) = sup{|f (z)|2 : f ∈ O(D),

∫
D

|f |2dλ ≤ 1}.

Therefore the Suita conjecture is equivalent to

c2
D ≤ πKD .

Surprisingly, the only sensible approach to this problem turned out to be
by several complex variables! Ohsawa (1995) observed that it is really an
extension problem: for z ∈ D find f ∈ O(D) such that f (z) = 1 and∫

D

|f |2dλ ≤ π

(cD(z))2
.

Using the methods of the Ohsawa-Takegoshi extension theorem he
showed the estimate

c2
D ≤ CπKD

with C = 750.

C = 2 (B., 2007)
C = 1.95388 . . . (Guan-Zhou-Zhu, 2011)



Theorem (Ohsawa-Takegoshi with optimal constant, B. 2013)
Ω pscvx in Cn−1 × D, where 0 ∈ D ⊂ C,
ϕ psh in Ω, f holomorphic in Ω′ := Ω ∩ {zn = 0}
Then there exists a holomorphic extension F of f to Ω such that∫

Ω

|F |2e−ϕdλ ≤ π

(cD(0))2

∫
Ω′
|f |2e−ϕdλ′.

Original solution of the L2-extension problem with optimal constant.
Heavily influenced by Bo-Yong Chen’s proof of the Ohsawa-Takegoshi
theorem directly from Hörmander’s estimate.
For n = 1 and ϕ ≡ 0 we obtain the Suita conjecture.

Crucial ODE Problem Find g ∈ C 0,1(R+), h ∈ C 1,1(R+) s.th. h′ < 0,
h′′ > 0,

lim
t→∞

(g(t) + log t) = lim
t→∞

(h(t) + log t) = 0

and (
1− (g ′)2

h′′

)
e2g−h+t ≥ 1.

Solution h(t) := − log(t + e−t − 1)

g(t) := − log(t + e−t − 1) + log(1− e−t).



Guan-Zhou recently gave another proof of the Ohsawa-Takegoshi with
optimal constant (and obtained some generalizations) but used essentially
the same ODE with two unknowns (with essentially the same solutions).

They also answered the following, more detailed problem posed by Suita:

Theorem (Guan-Zhou, 2013) For any Riemann surface M which is not
biholomorphic to a disc with a polar subset removed and which admits
the Green function one has strict inequality in the Suita conjecture.



Another Approach to Suita Conjecture

Ω ⊂ Cn, w ∈ Ω

Gw (z) = GΩ(z ,w)

= sup{u(z) : u ∈ PSH−(Ω) : lim
z→w

(
u(z)− log |z − w |

)
<∞}

(pluricomplex Green function)

Theorem 0 Assume Ω is pseudoconvex in Cn. Then for w ∈ Ω and t ≤ 0

KΩ(w) ≥ 1

e−2ntλ({Gw < t})
.

Optimal constant: “=” if Ω = B(w , r).

For n = 1 letting a→∞ this gives the Suita conjecture:

KΩ(w) ≥ cΩ(w)2

π
.



Proof 1 Using Donnelly-Fefferman’s estimate for ∂̄ one can prove

KΩ(w) ≥ 1

c(n, t)λ({Gw < t})
, (1)

where

c(n, t) =

(
1 +

C

Ei(−nt)

)2

, Ei(a) =

∫ ∞
a

ds

ses

(B. 2005). Now use the tensor power trick: Ω̃ = Ω× · · · × Ω ⊂ Cnm,
w̃ = (w , . . . ,w) for m� 0. Then

KΩ̃(w̃) = (KΩ(w))m, λ({Gw̃ < t}) = (λ({Gw < t}))m,

and by (1) for Ω̃

KΩ(w) ≥ 1

c(nm, t)1/mλ({Gw < t})
.

But lim
m→∞

c(nm, t)1/m = e−2nt .



Proof 2 (Lempert) By Maitani-Yamaguchi / Berndtsson’s result on
log-(pluri)subharmonicity of the Bergman kernel for sections of a
pseudoconvex domain it follows that logK{Gw<t}(w) is convex for
t ∈ (−∞, 0]. Therefore

t 7−→ 2nt + logK{Gw<t}(w)

is convex and bounded, hence non-decreasing. It follows that

KΩ(w) ≥ e2ntK{Gw<t}(w) ≥ e2nt

λ({Gw < t})
.

This way we have two additional proofs of the Suita conjecture, the first
making effective use of arbitrarily many complex variables and the second
one using two complex variables. The initial proof (using ODE) could be
done entirely in one variable.

Berndtsson-Lempert Proof 2 can be improved to obtain the Ohsawa-
Takegoshi extension theorem with optimal constant (one has to use
Berndtsson’s positivity of direct image bundles).



What happens with e−2ntλ({Gw < t}) as t → −∞ for arbitrary n? For
convex Ω using Lempert’s theory one can get

Proposition If Ω is bounded, smooth and strongly convex in Cn then for
w ∈ Ω

lim
t→−∞

e−2ntλ({Gw < t}) = λ(IKΩ (w)),

where IKΩ (w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w} (Kobayashi indicatrix).

Corollary If Ω ⊂ Cn is convex then

KΩ(w) ≥ 1

λ(IKΩ (w))
, w ∈ Ω.

For general Ω one can prove

Theorem (B.-Zwonek) If Ω is bounded and hyperconvex in Cn and
w ∈ Ω then

lim
t→−∞

e−2ntλ({Gw < t}) = λ(IAΩ (w)),

where IAΩ (w) = {X ∈ Cn : limζ→0

(
Gw (w + ζX )− log |ζ|

)
≤ 0}

(Azukawa indicatrix)



Corollary (SCV version of the Suita conjecture) If Ω ⊂ Cn is
pseudoconvex and w ∈ Ω then

KΩ(w) ≥ 1

λ(IAΩ (w))
.

Conjecture 1 For Ω pseudoconvex and w ∈ Ω the function

t 7−→ e−2ntλ({Gw < t})

is non-decreasing in t.

It would follow if the function t 7−→ log λ({Gw < t}) was convex on
(−∞, 0]. Fornæss: this doesn’t have to be true even for n = 1.



Theorem (B.-Zwonek) Conjecture 1 is true for n = 1.

Proof It is be enough to prove that f ′(t) ≥ 0 where

f (t) := log λ({Gw < t})− 2t

and t is a regular value of Gw . By the co-area formula

λ({Gw < t}) =

∫ t

−∞

∫
{Gw=s}

dσ

|∇Gw |
ds

and therefore

f ′(t) =

∫
{Gw=t}

dσ

|∇Gw |
λ({Gw < t})

− 2.

By the Schwarz inequality∫
{Gw=t}

dσ

|∇Gw |
≥ (σ({Gw = t}))2∫

{Gw=t}
|∇Gw |dσ

=
(σ({Gw = t}))2

2π
.



The isoperimetric inequality gives

(σ({Gw = t}))2 ≥ 4πλ({Gw < t})

and we obtain f ′(t) ≥ 0.

Conjecture 1 for arbitrary n is equivalent to the following pluricomplex
isoperimetric inequality for smooth strongly pseudoconvex Ω (then
Gw ∈ C 1,1(Ω̄ \ {w}), B.Guan / B., 2000)∫

∂Ω

dσ

|∇Gw |
≥ 2λ(Ω).

Conjecture 1 also turns out to be closely related to the problem of
symmetrization of the complex Monge-Ampère equation.



What about corresponding upper bound in the Suita conjecture?
Not true in general:

Proposition (B.-Zwonek) Let Ω = {r < |z | < 1}. Then

KΩ(
√
r)

(cΩ(
√
r))2

≥ −2 log r

π3
.

It would be interesting to find un upper bound of the Bergman kernel for
domains in C in terms of logarithmic capacity which would in particular
imply the ⇒ part in the well known equivalence

KΩ > 0 ⇔ cΩ > 0

(c2
Ω ≤ πKΩ being a quantitative version of ⇐).



The upper bound for the Bergman kernel holds for convex domains:

Theorem (B.-Zwonek) For a convex Ω and w ∈ Ω set

FΩ(w) :=
(
KΩ(w)λ(IKΩ (w))

)1/n
.

Then FΩ(w) ≤ 4. If Ω is in addition symmetric w.r.t. w then
FΩ(w) ≤ 16/π2 = 1.621 . . . .

Sketch of proof Denote I := int IKΩ (w) and assume that w = 0. One can
show that I ⊂ 2 Ω (I ⊂ 4/πΩ if Ω is symmetric). Then

KΩ(0)λ(I ) ≤ KI/2(0)λ(I ) =
λ(I )

λ(I/2)
= 4n.

For convex domains FΩ is thus a biholomorphically invariant function
satisfying 1 ≤ FΩ ≤ 4. Can we find an example with FΩ(w) > 1?



Theorem (B.-Zwonek) Define

Ω = {z ∈ Cn : |z1|+ · · ·+ |zn| < 1}.

Then for w = (b, 0, . . . , 0), where 0 < b < 1, one has

KΩ(w)λ(IKΩ (w)) = 1 + (1− b)2n (1 + b)2n − (1− b)2n − 4nb

4nb(1 + b)2n

= 1 +
(1− b)2n

(1 + b)2n

n−1∑
j=1

1

2j + 1

(
2n − 1

2j

)
b2j .

The proof uses the formula for the Bergman kernel for this ellipsoid

KΩ((b, 0, . . . , 0)) =
2n − 1

4πωb

(
(1− b)−2n − (1 + b)−2n

)
,

where ω = λ({z ∈ Cn−1 : |z1|+ · · ·+ |zn−1| < 1}), obtained from the
deflation method of Boas-Fu-Straube (1999). To compute λ(IKΩ (w))
(main part of the proof) the Jarnicki-Pflug-Zeinstra (1993) formula for
geodesics in convex complex ellipsoids (which is based on Lempert’s
theory) is applied.
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FΩ(b, 0, . . . , 0) in Ω = {|z1|+ · · ·+ |zn| < 1} for n = 2, 3, . . . , 6.



Theorem (B.-Zwonek) For m ≥ 1/2 set Ω = {|z1|2m + |z2|2 < 1} and
w = (b, 0), 0 < b < 1. Then

KΩ(w)λ(IKΩ (w)) = P
m(1− b2) + 1 + b2

2(1− b2)3(m − 2)m2(m + 1)(3m − 2)(3m − 1)
,

where

P =b6m+2
(
−m3 + 2m2 + m − 2

)
+ b2m+2

(
−27m3 + 54m2 − 33m + 6

)
+ b6m2

(
3m2 + 2m − 1

)
+ 6b4m2

(
3m3 − 5m2 − 4m + 4

)
+ b2

(
−36m5 + 81m4 + 10m3 − 71m2 + 32m − 4

)
+ 2m2

(
9m3 − 27m2 + 20m − 4

)
.

Formulas obtained using Mathematica.

In this domain all values of FΩ are attained for (b, 0), 0 < b < 1.

The Kobayashi function for this ellipsoid was computed implicitly by
Blank-Fan-Klein-Krantz-Ma-Pang (1992) (this had only sufficed for
numeric computations of λ(IKΩ (w))).
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FΩ(b, 0) in Ω = {|z1|2m + |z2|2 < 1} for m = 4, 8, 16, 32, 64, 128.

sup
0<b<1

FΩ(b, 0)→ 1.010182 . . . as m→∞



What is the highest value of FΩ for convex Ω?

What can be said the function w 7−→ − log λ(IAΩ (w))?

Is it plurisubharmonic?

It does not have to be C 2:

Theorem (B.-Zwonek) If Ω = {|z1|+ |z2| < 1} and 0 < b ≤ 1/4,

λ(IKΩ ((b, b)))

=
π2

6

(
30b8 − 64b7 + 80b6 − 80b5 + 76b4 − 16b3 − 8b2 + 1

)
.

λ(IKΩ ((b, b))) is not C 2 at b = 1/4.

It is known (Hahn-Pflug) that for 0 < b < 1/2:

KΩ((b, b)) =
2
(
8b4 − 6b2 + 3

)
π2(1− 4b2)3

.
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FΩ(b, b) in Ω = {|z1|+ |z2| < 1} for 0 < b ≤ 1/4.



Mahler Conjecture

K - convex symmetric body in Rn

K ′ := {y ∈ Rn : x · y ≤ 1 for every x ∈ K}

Mahler volume := λ(K )λ(K ′)

Mahler volume is an invariant of the Banach space defined by K : it is
independent of linear transformations and of the choice of inner product.

Santaló Inequality (1949) Mahler volume is maximized by balls

Mahler Conjecture (1938) Mahler volume is minimized by cubes

Hansen-Lima bodies: starting from an interval they are produced by
taking products of lower dimensional HL bodies and their duals.
n = 2: square
n = 3: cube & octahedron
n = 4: . . .



Bourgain-Milman (1987) There exists c > 0 such that

λ(K )λ(K ′) ≥ cn
4n

n!
.

Mahler Conjecture: c = 1

G. Kuperberg (2006) c = π/4

Nazarov (2012)

I equivalent SCV formulation of the Mahler Conjecture via the
Fourier transform and the Paley-Wiener theorem

I proof of the Bourgain-Milman Inequality (c = (π/4)3) using
Hörmander’s estimate for ∂̄



K - convex symmetric body in Rn

Nazarov: consider TK := intK + iRn ⊂ Cn. Then(π
4

)2n 1

(λn(K ))2
≤ KTK

(0) ≤ n!

πn

λn(K ′)

λn(K )
.

Therefore

λn(K )λn(K ′) ≥
(π

4

)3n 4n

n!
.

To show the lower bound we can use the SCV version of the Suita
conjecture for convex domains:

KTK
(0) ≥ 1

λ2n(ITK
(0))

.

Proposition ITK
(0) ⊂ 4

π
(K + iK )

In particular, λ2n(ITK
(0)) ≤

(
4

π

)2n

(λn(K ))2

Conjecture λ2n(ITK
(0)) ≤

(
4

π

)n

(λn(K ))2



Thank you!


