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Introduction

This is a brief introduction to pluripotential theory. We discuss the following
topics in subsequent sections:

1. Definition of the complex Monge-Ampère operator p. 2

2. Domain of definition of (ddc)n p. 7

3. Dirichlet problem p. 10
4. Extremal functions p. 14

5. Applications to the Bergman kernel p. 17

Section 1 contains the fundamentals of the theory due to Bedford-Taylor [5], [7]
and some generalizations of Demailly [25]. In Section 2 we present characterization
of the domain of definition for the complex Monge-Ampère operator from [14], [16].
In Section 3 we survey the Dirichlet problem for this operator, which is overall a
very broad topic. Relative Bedford-Taylor capacity, pluripolar and negligible sets,
as well as extremal functions are briefly discussed in Section 4. The Siciak extremal
function and the pluricomplex Green function are treated there in a bigger detail.
The latter is used in Section 5 for various applications to the Bergman kernel and
metric. Sections 2 and 5 contain the most recent material (but already almost 10
years old).

Especially in the first two sections we present some proofs to get the reader
acquainted with common techniques. Anybody interested in more details should see
the expositions [25], [27], [12], [47] or [41]. We also give some easy exercises as well
as open problems.
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2 Z. B LOCKI

1. Definition of the complex Monge-Ampère operator

The complex Monge-Ampère for smooth functions defined on an open subset of
Cn is given by

det(ujk̄),

where we use the notation ujk̄ = ∂2u/∂zj∂z̄k. One would like to extend this (as
a nonnegative measure) for non-smooth plurisubharmonic (psh) u, similarly as in
analogous cases of Laplacian for subharmonic functions and the real Monge-Ampère
operator for convex functions (see [54] for an exposition of the latter).

First observation is that, unlike in the these two cases, it is not always possible.
Following Kiselman [40] consider the function

u(z) = (− log |z1|)
1/n(|z2|

2 + · · · + |zn|
2 − 1).

It is psh near the origin, smooth away from {zn = 0} but

det(ujk̄) =
1 − 1

n
− |z2|

2 − · · · − |zn|
2

−4n|z1|2 log |z1|

is not locally integrable near {zn = 0} (if n ≥ 2). (The first example of this kind
was constructed by Shiffman and Taylor [57].)

Bedford-Taylor’s theory [5], [7] enables to define the Monge-Ampère operator
for locally bounded psh functions. As the definition uses induction on the degree of
nonlinearity, one needs to introduce positive currents. A complex current of bidegree
(p, q) (or bidimension (n− p, n− q)) is a differential form

T =
∑

|I|=p
|J |=q

′
TIJ dzI ∧ dz̄J

whose coefficients TIJ are distributions. Equivalently, a current T of bidegree (p, q)
in an open domain Ω in Cn (which we write T ∈ D′

(p,q)(Ω)) is a continuous functional

on the space D(n−p,n−q)(Ω) of smooth complex forms of bidegree (n− p, n− q) with
compact support.

We say that a current T of bidegree (p, p) is positive (we will write T ≥ 0) if it
is real (that is T̄ = T ) and for any α1, . . . , αn−p ∈ C(1,0) one has

T ∧ iα1 ∧ ᾱ1 ∧ · · · ∧ iαn−p ∧ ᾱn−p ≥ 0.

Exercise 1. Prove that a (1, 1)-current
∑

j,k

Tjk i dzj ∧ dz̄k

is positive if and only if (Tjk) is positive semi-definite.

The following result is crucial:
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Theorem 1.1. Positive currents are of order 0 (that is their coefficients are complex
measures).

Proof. Let {βj} be a basis of C(n−p,n−p) whose elements are of the form

iα1 ∧ ᾱ1 ∧ · · · ∧ iαn−p ∧ ᾱn−p, α1, . . . , αn−p ∈ C(1,0).

(To show that such a basis exists it is enough to prove that dzJ ∧dz̄K can be written
as a linear combination of such forms. This follows easily from

2dzj ∧ dz̄k =(dzj + dzk) ∧ (dz̄j + dz̄k) + i(dzj + idzk) ∧ (dz̄j − idz̄k)

− (i+ 1)(dzj ∧ dz̄j + dzk ∧ dz̄k).)

By {β ′
j} denote the dual basis in C(p,p). Write

T =
∑

I,J

′
TIJdzI ∧ dz̄J =

∑

j

Tjβ
′
j ,

where Tjdλ = T ∧ βj ≥ 0. We see that TIJ can be expressed as linear combinations
of positive measures Tj, and thus are complex measures. �

Let T be a closed (that is dT = 0) positive current of bidegree (q, q), q < n.
Since complex measures (that is distributions of order 0) can be multiplied by locally
bounded functions, for any u ∈ PSH ∩ L∞

loc we can define

ddcu ∧ T := ddc(uT ).

(Here dc = i(∂̄ − ∂), so that ddc = 2i∂∂̄.)

Proposition 1.2. ddcu ∧ T is a closed positive current.

Proof. Closedness is clear. Since u is locally bounded, by the Lebesgue bounded
convergence theorem we have weak convergence uεT → uT , where uε = u ∗ ρε is the
standard regularization of psh functions. Therefore ddc(uεT ) → ddc(uT ) weakly.
We clearly have ddc(uεT ) = ddcuε∧T in the usual sense. Since positive currents can
be weakly approximated by smooth positive forms, it remains to show the following
result:

Proposition 1.3. If α ∈ C(p,p) and β ∈ C(1,1) are positive then so is α ∧ β.

Proof. It is an easy consequence of the fact that after a change of variables we can
write

β =
∑

j

λj i dzj ∧ dz̄j,

where λj ≥ 0. �

The above result is false for β ∈ C(q,q), it was originally shown in [34] (and
independently in [4]). S. Dinew [30] constructed explicit positive α, β ∈ C(2,2)(C

4)
such that α ∧ β < 0.
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Problem 1. Construct explicit α ∈ C(2,2)(C
4) with α2 < 0.

From now on assume that T is a closed positive current of bidegree (q, q). We
can define inductively

ddcu1 ∧ · · · ∧ ddcup ∧ T, u1, . . . , up ∈ PSH ∩ L∞
loc

and (ddcu)n is a positive measure for locally bounded psh u. If u is smooth then

(ddcu)n = n!4n det

(
∂2u

∂zj∂zk

)
dλ.

Exercise 2. Show that (ddc log+ |z|)n = (2π)ndσ/σ(S) where dσ is the surface mea-
sure on the unit sphere S in C

n.

Theorem 1.4 (Chern-Levine-Nirenberg Inequality [24]). Assume that K is compact
in open Ω in Cn. Then for a closed closed positive current T in Ω and u1, . . . , up ∈
PSH ∩ L∞(Ω) we have

||ddcu1 ∧ · · · ∧ ddcup ∧ T ||K ≤ C||u1||L∞(Ω) . . . ||up||L∞(Ω)||T ||Ω,

where C depends only on K and Ω and ||T ||E =
∑′

I,J ||TIJ ||E is a total variation of
the current T over the set E.

For the proof we will need a preparatory result:

Proposition 1.5. Let T =
∑′

I,J TIJ dzI∧dz̄J be a positive current of bidegree (p, p).
Then

|TIJ | ≤ cn T ∧ ωn−p,

where ω =
∑

j
i
2
dzj ∧ dz̄j.

Proof. Let {ωIJ} be a basis in C(n−p,n−p) dual to {dzI ∧ dz̄J}. Write

ωIJ =
∑

j

cjIJ βj,

where {βj} is chosen as in the proof of Theorem 1.1. Then

|TIJ | = |T ∧ ωIJ | = |
∑

j

cjIJ T ∧ βj | ≤ cnT ∧ ωn−p

for βj ≤ c′ωn−p by Proposition 1.3. �
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Proof of Theorem 1.4. We may assume that p = 1. Let ϕ ∈ C∞
0 (Ω) be nonnegative

and such that ϕ = 1 on K. By Proposition 1.5

||ddcu ∧ T ||K ≤ cn

∫

K

ddcu ∧ T ∧ ωn−p−1

≤ cn

∫

Ω

ϕddcu ∧ T ∧ ωn−p−1

= cn

∫

Ω

u ddcϕ ∧ T ∧ ωn−p−1

and the estimate follows. �

The following approximation result is due to Bedford and Taylor [5]:

Theorem 1.6. For k = 0, 1, . . . , p, where p + q ≤ n, let {ujk} be a sequence of psh
functions decreasing to a locally bounded psh uk as j → ∞. Then we have weak
convergence

uj0 dd
cuj1 ∧ · · · ∧ ddcujp ∧ T −→ u0 dd

cu1 ∧ · · · ∧ ddcup ∧ T.

Proof. Suppose that ujk and T are defined in a neighborhood of B̄, where B =

B(z0, r). We may assume that for some positive constant M we have −M ≤ ujk ≤ −1
in a neighborhood of B̄. If we take B′ ⋐ B and ψ(z) := |z − z0|

2 − r2 then for A

big enough max{ujk, Aψ} = ujk on B′ and max{ujk, Aψ} = Aψ in a constant neigh-

borhood of ∂B. We may therefore assume that ujk = uk = Aψ in a neighborhood of
∂B.

The further proof is by induction with respect to p. The theorem is obviously
true if p = 0. Let p ≥ 1 and assume it holds for p− 1. It follows that

Sj := ddcuj1 ∧ · · · ∧ ddcujp ∧ T −→ ddcu1 ∧ · · · ∧ ddcup ∧ T =: S

weakly and we have to show that uj0S
j → u0S weakly. Note it is very simple if all

involved functions are continuous: then the convergence ujk → uk is uniform and we
may write

uj0S
j − u0S = (uj0 − u0)S

j + u0(S
j − S).

In the general case we see that by the Chern-Levine-Nirenberg inequality the
sequence Sj is relatively compact in the weak∗ topology. It therefore remains to
show that if uj0S

j → Θ weakly then Θ = u0S.

First we claim that u0S ≥ Θ. For this it is enough to show that uj00 S∧α ≥ Θ∧α
for every j0 and positive α ∈ C(n−p−q,n−p−q). For any ε we have

uj0 S
j ∧ α ≤ uj00 S

j ∧ α ≤ uj00 ∗ ρε S
j ∧ α

and therefore Θ ∧ α ≤ uj00 ∗ ρε S ∧ α. From the Lebesgue monotone convergence
theorem we now get Θ ∧ α ≤ uj00 S ∧ α.



6 Z. B LOCKI

By Proposition 1.5 to finish the proof of the theorem it remains to show that∫
B

(u0S − Θ) ∧ ωn−p−q ≤ 0. Integrating by parts we will get
∫

B

u0dd
cu1 ∧ · · · ∧ ddcup ∧ T ∧ ωn−p−q ≤

∫

B

uj0dd
cu1 ∧ · · · ∧ ddcup ∧ T ∧ ωn−p−q

=

∫

B

u1dd
cuj0 ∧ dd

cu2 ∧ · · · ∧ ddcup ∧ T ∧ ωn−p−q

≤ · · · ≤

∫

B

uj0dd
cuj1 ∧ · · · ∧ ddcujp ∧ T ∧ ωn−p−q

and the theorem follows since the last integral in fact converges to
∫
B

Θ ∧ ωn−p−q

(recall that ukj = Aψ in a fixed neighborhood of ∂B). �

As proved by Demailly [25] (see also [26]), definition of the Monge-Ampère
operator can be extended to psh functions that may be unbounded on a relatively
compact subset. Take u ∈ PSH(Ω) which is locally bounded away from Ω′ ⋐ Ω.
Withous loss of generality we may assume that u is negative. Define

ddcuj := max{u,−j}.

Then uj = u in Ω \ Ω′ for j big enough and integration by parts gives
∫

Ω

ddcuj ∧ T ∧ ωn−q−1 =

∫

Ω

ddcuk ∧ T ∧ ωn−q−1

for j, k sufficiently large. Let χ ∈ C∞
0 (Ω) be equal to |z|2/4 in Ω′. Then

C1

∫

Ω

ddcuj ∧ T ∧ ωn−q−1 ≥

∫

Ω

χ ddcuj ∧ T ∧ ωn−q−1

=

∫

Ω

uj dd
cϕ ∧ T ∧ ωn−q−1

≥

∫

Ω′

uj T ∧ ωn−q + C2.

This shows that uT has a locally bounded mass and thus is a current. We can now
define ddcu ∧ T as before. Since by the Lebesgue bounded convergence theorem
ujT → uT weakly, we see that ddcu ∧ T is a closed positive current.

Exercise 3. Show that (ddc log |z|)n = (2π)nδ0.

We also see that in the proof of the Chern-Levine-Nirenberg inequality we really
get

||ddcu1 ∧ · · · ∧ ddcup ∧ T ||K ≤ C||u1||L∞(Ω\K) . . . ||up||L∞(Ω\K)||T ||Ω\K.

We have a similar result to Theorem 1.6 but we have to assume that p + q < n
and that functions are defined in a pseudoconvex domain:
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Theorem 1.7. For k = 0, 1, . . . , p, where p + q < n, let {ujk} be a sequence of
psh functions in a pseudoconvex domain Ω in Cn decreasing to psh uk which is
locally bounded away from a compact subset of Ω as j → ∞. Then we have weak
convergence

uj0 dd
cuj1 ∧ · · · ∧ ddcujp ∧ T −→ u0 dd

cu1 ∧ · · · ∧ ddcup ∧ T.

Proof. The proof is essentially the same as that of Theorem 1.6 with some modifi-
cations. We take B to be a strongly pseudoconvex domain (instead of a ball) and ψ
its defining function. We assume that −M ≤ ujk ≤ −1 in B \B′. We choose A >> 1

so that Aψ ≤ ujk − 1 in a neighborhood of ∂B′ and replace ujk with
{

max{ujk, Aψ} in B \B′

ujk in B′.

The rest of the proof is the same. �

Note the pseudoconvexity assumption in Theorem 1.7 is not a real obstacle, at
least when u0 = u1 = · · · = up, for {u < const} is pseudoconvex for psh u.

It is crucial in Theorems 1.6 and 1.7 that the sequences are decreasing. Cegrell
[19] constructed a sequence uj of smooth psh functions converging weakly (and thus
in Lp

loc for every p <∞) to a smooth psh u but such that (ddcuj)
n does not converge

weakly to (ddcu)n.

Exercise 4. Following Cegrell [20] define

uj(z) := log(|z1 . . . zn|
2 + 1/j)

vj(z) = log(|z1|
2 + 1/j) + · · · + log(|zn|

2 + 1/j),

so that both sequences decrease to 2 log |z1 . . . zn|. Show that (ddcuj)
n converges

weakly to 0 whereas (ddcvj)
n to πnδ0.

2. Domain of definition of (ddc)n

These two examples of Cegrell above suggest to introduce the domain of defi-
nition D of the complex Monge-Ampère operator as follows: we say that a psh u
belongs to D if there exists a measure µ such that for every sequence uj of smooth
psh functions decreasing to u we have weak convergence (ddcuj)

n → µ. We then of
course set (ddcu)n := µ. Note that the definition is purely local so that the approxi-
mating sequences uj may be defined in a smaller set than u. One can easily show that
D is the maximal subclass of the class of psh functions where the Monge-Ampère
operator can be defined so that it is continuous for decreasing sequences.
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First consider the case n = 2 studied in [14]. Note that then it is easy to define
the Monge-Ampère operator for functions in W 1,2

loc (see also [6]):
∫

Ω

ϕ(ddcu)2 = −

∫

Ω

du ∧ dcu ∧ ddcϕ, ϕ ∈ C∞
0 (Ω).

Proposition 2.1. If a sequence of psh functions uj converges to a psh u in W 1,2
loc

then (ddcuj)
2 → (ddcu)2 weakly.

Proof. For ϕ ∈ C∞
0 (Ω) we have

∣∣∣∣
∫

Ω

ϕ
(
(ddcuj)

2 − (ddcu)2
)∣∣∣∣ =

∣∣∣∣
∫

Ω

ϕddc(uj − u) ∧ ddc(uj + u)

∣∣∣∣

=

∣∣∣∣
∫

Ω

d(uj − u) ∧ dc(uj − u) ∧ ddcϕ

∣∣∣∣

≤ C

(∫

Ω

|∇(uj − u)|2dλ

)1/2(∫

Ω

|∇(uj + u)|2dλ

)1/2

and the proposition follows. �

To obtain that PSH ∩W 1,2
loc ⊂ D we need however to know that it is continuous

for decreasing sequences. It was proved in [14] and slightly simplified by Cegrell [21]
who showed the second part of the following result:

Theorem 2.2. i) If u ∈ SH ∩W 1,2
loc and v ∈ SH are such that u ≤ v then v ∈ W 1,2

loc .

ii) If uj ∈ SH decreases to u ∈ SH ∩W 1,2
loc then it converges in W 1,2

loc .

Proof. i) We will show that if u, v are subharmonic in Ω ⊂ Rm and such that
u ≤ v < 0 then

(2.1) ||v||W 1,2(Ω′) ≤ C(Ω′,Ω) ||u||W 1,2(Ω), Ω′
⋐ Ω.

Choose nonnegative ϕ ∈ C∞
0 (Ω) such that ϕ = 1 on Ω′. Then

∫

Ω′

|∇v|2dλ ≤

∫

Ω

ϕ|∇v|2dλ

=

∫

Ω

ϕ
(1

2
∆(v2) − v∆v

)
dλ

≤
1

2

∫

Ω

v2∆ϕdλ−

∫

Ω

ϕu∆v dλ

and it is enough to estimate the last integral. We have

−

∫

Ω

ϕu∆v dλ = −

∫

Ω

v∆(ϕu) dλ = −

∫

Ω

v
(
ϕ∆u+

1

2
〈∇ϕ,∇u〉 + u∆ϕ

)
dλ

and we can easily estimate every term to get (2.1).
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ii) We have
∫

Ω

ϕ|∇(uj − u)|2dλ =

∫

Ω

ϕ
[1

2
∆((uj − u)2) − (uj − u)∆(uj − u)

]
dλ

≤
1

2

∫

Ω

(uj − u)2∆ϕdλ+

∫

Ω

ϕ(uj − u)∆u dλ

and the last integral converges to 0 by the Lebesgue monotone convergence theorem.
�

The second part of Theorem 2.2 and Proposition 2.1 give PSH ∩W 1,2
loc ⊂ D. In

fact, one can show that for u ∈ PSH \W 1,2
loc it is possible to construct an approxi-

mating sequence whose Monge-Ampère measures are not weakly bounded, see [14]
for details. We thus get:

Theorem 2.3. If n = 2 then D = PSH ∩W 1,2
loc .

Theorems 2.3 and 2.2 give in particular (in dimension 2):

Theorem 2.4. If u ∈ D and a psh v are such that u ≤ v then v ∈ D.

In fact, the result holds in arbitrary dimension, see [16]. In this case the char-
acterization of D is a bit more complicated:

Theorem 2.5 ([16]). For a negative psh u the following are equivalent

i) u ∈ D;

ii) For all sequences of smooth plurisubharmonic functions uj decreasing to u
the sequence (ddcuj)

n is weakly bounded;

iii) For all sequences of smooth plurisubharmonic functions uj decreasing to u
the sequences

|uj|
n−2−pduj ∧ d

cuj ∧ (ddcuj)
p ∧ ωn−p−1, p = 0, 1, . . . , n− 2,

(ω := ddc|z|2 is the Kähler form in Cn) are weakly bounded;

iv) There exists a sequence of smooth plurisubharmonic functions uj decreasing
to u such that the sequences (6) are weakly bounded.

Note that in view of example from Exercise 4 we cannot replace the quantifier for
all by there exists in ii). Theorem 2.5 also implies that if there are two approximating
sequences whose Monge-Ampère measures converge weakly to two different limits
(as in Exercise 4) then there exists a third approximating sequence whose Monge-
Ampère measures are not weakly bounded.
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3. Dirichlet problem

For a bounded domain Ω in Cn, continuous ϕ on ∂Ω and regular measure µ on
Ω we consider the following Dirichlet problem

(3.1)






u ∈ PSH(Ω)

(ddcu)n = µ

lim
z→w

u(z) = ϕ(w), w ∈ ∂Ω

(note that (ddcu)n is well defined here since u is locally bounded near ∂Ω). First we
note that in such a general case we do not even have uniqueness here:

Exercise 5. For α, β > 0 consider

u(z) := max{α log |z|, β log |w|}.

Then u = 0 on the boundary of the unit bidisc. Show that

(ddcu)2 = παβδ0.

We will get uniqueness in (3.1) if we restrict ourselves to bounded psh functions:

Theorem 3.1 (Comparison Principle [7]). Let u, v be bounded psh functions in
bounded domain Ω in Cn such that (ddcu)n ≤ (ddcv)n and

(3.2) lim inf
z→∂Ω

(u(z) − v(z)) ≥ 0.

Then v ≤ u in Ω.

It easily follows from the following domination principle:

Theorem 3.2. Assume that u, v ∈ PSH ∩ L∞(Ω) satisfy (3.2). Then
∫

{u<v}

(ddcv)n ≤

∫

{u<v}

(ddcu)n.

Proof. We will show it for u, v continuous on Ω̄, for the general case see [7] or [12].
In this case we may assume that u < v in Ω and u = v on ∂Ω. For ε > 0 define
vε := max{v, u+ε}, so that vε = u+ε near ∂Ω and vε → v in Ω as ε → 0. Therefore
by the Stokes theorem ∫

Ω

(ddcu)n =

∫

Ω

(ddcvε)
n

and by weak convergence (ddcvε)
n → (ddcv)n

lim inf
ε→0

∫

Ω

(ddcvε)
n ≥

∫

Ω

(ddcv)n.

�
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Proof of Theorem 3.1. Suppose the set {v > u} in not empty. Then for some ε > 0
the set U := {v + ψ > u} is also nonempty, where ψ := |z|2 −M and M is chosen
in such a way that ψ ≤ 0 in Ω. From Theorem 3.2 we now get

∫

U

(ddcu)n ≥

∫

U

(ddc(v + ψ))n ≥

∫

U

(ddcv)n +

∫

U

(ddcψ)n >

∫

U

(ddcu)n,

a contradiction. �

The fundamental result is due to Bedford and Taylor [5] who showed that the
problem has a solution in strongly pseudoconvex Ω provided that µ has continuous
density:

Theorem 3.3. If Ω is strongly pseudoconvex, ϕ ∈ C(∂Ω), F ∈ C(Ω̄), F ≥ 0 then
there exists unique solution to the following Dirichlet problem

(3.3)





u ∈ PSH(Ω) ∩ C(Ω̄)

(ddcu)n = F dλ

u|∂Ω = ϕ

By the comparison principle a bounded solution of (3.3), if exists, has to be
given by the Perron-Bremermann envelope

u =
(

sup{v ∈ PSH ∩ L∞(Ω) : (ddcv)n ≥ Fdλ, v∗|∂Ω ≤ ϕ}
)∗

(here v∗ denotes the upper regularization of v, it is defined on Ω̄). This was the
approach in [5], see also [9] and [12] for some simplifications. Continuity of u defined
this way can be proved using a method of Walsh [58].

Theorem 3.3 can also be easily deduced from the following deep regularity result
of Cafferelli, Kohn, Nirenberg and Spruck [18] and Krylov [48]:

Theorem 3.4. Assume that Ω is strongly pseudoconvex with C∞ boundary, ϕ ∈
C∞(∂Ω), F ∈ C∞(Ω̄), F > 0. Then there exists a solution of (3.3) in C∞(Ω̄).

The assumption F > 0 in Theorem 3.4 is crucial as the following example of
Gamelin-Sibony [32] shows: the function

u(z, w) :=
(

max{|z|2 −
1

2
, |w|2 −

1

2
, 0}

)2

is psh and C1,1 in the unit ball B of C2, (ddcu)2 = 0 and u is C∞ on ∂B. But u is not
C2. Another example of this kind but of slightly different nature was constructed
by Bedford and Fornæss [3].

C1,1-regularity in the degenerate case is in fact optimal:

Theorem 3.5 (Krylov [49]). Assume that Ω is strongly pseudoconvex with C3,1

boundary, ϕ ∈ C3,1(∂Ω) and F 1/n ∈ C1,1(Ω), F ≥ 0. Then u ∈ C1,1(Ω̄).
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C3,1-regularity in the above theorem is also optimal: in the unit ball B in C2 set

u(z, w) := (1 − |z|2)α

where 3
2
≤ α < 2. Then u ∈ C1,α−1(B̄) but u|∂B ∈ C3,2α−3(∂B) (and both exponents

are biggest possible).

Theorem 3.3 can be easily generalized to a class of B-regular domains introduced
by Sibony [55]. They are characterized by the following result from [55] (see also [9]
and [12]):

Theorem 3.6. For a bounded domain Ω in Cn the following are equivalent:

i) For every z0 ∈ ∂Ω there exists v psh in Ω such that u∗ < 0 on Ω̄ \ {z0} but
lim
z→z0

u(z) = 0 (that is every boundary point admits a strong psh barrier);

ii) For every continous function on ∂Ω there exists a psh extension to Ω, conti-
nous on Ω̄;

iii) There exists a smooth psh function ψ in Ω such that lim
z→∂Ω

ψ(z) = 0 and the

function ψ(z) − |z|2 is psh (that is ψ is uniformly strongly psh in Ω).

Another important class of domains in pluripotential theory are the ones that
admit weak psh barriers. Namely, we call a bounded domain Ω in Cn hyperconvex
if there exists a negative psh u in Ω which vanishes on the boundary.

Problem 2. Assume that a bounded domain Ω has the following property: for every
z0 ∈ ∂Ω there exists a neighborhood U of z0 and u a negative psh function in U ∩ Ω
such that lim

z→z0
u(z) = 0. Is Ω hyperconvex?

Kerzman and Rosay [39] proved that hyperconvexity is a local notion of the
boundary (see also [25]. Demailly [25] showed that pseudoconvex domains with
Lipschitz boundary are hyperconvex. The notions of B-regular and hyperconvex
domains coincide for n = 1 but not in higher dimensions: polydisks for example are
hyperconvex but not B-regular.

Theorem 3.3 also holds for hyperconvex domains but we have to add a necessary
assumption:

Theorem 3.7 ([9]). Let Ω be a bounded hyperconvex domain in Cn and assume that
ϕ ∈ C(∂Ω) can be extended to a psh function in Ω, continuous on Ω̄. Then for any
nonnegative F ∈ C(Ω̄) there exists a unique solution to (3.3).

Corollary 3.8. For any bounded hyperconvex Ω there exists unique uΩ ∈ PSH(Ω)∩
C(Ω̄) such that uΩ = 0 on ∂Ω and (ddcuΩ)n = dλ in Ω.

Problem 3. Is it true that uΩ ∈ C∞(Ω)?
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This is probably quite hard. Note that we do not assume here any regularity
of the boundary. Analogous problem for the real Monge-Ampère equation and not
necessarily smooth convex domains has an affirmative answer. The main ingredient
is an interior C2-estimate of Pogorelov [53]. A complex version of this estimate is
not known despite some attempts (see [13]).

Several important generalizations of Theorem 3.3 are due to Ko lodziej. In [46]
he showed that it holds for nonnegative F ∈ Lp(Ω) for some p > 1. The key is the
following estimate:

Theorem 3.9 ([46]). Let B be the unit ball in Cn. Then for smooth psh u vanishing
on ∂B and p > 1 one has

||u||L∞(B) ≤ C
∣∣∣∣ det(ujk̄)

∣∣∣∣1/n
Lp(B)

,

where C depends only on n and p.

For p = 2 it was earlier proved by Cheng and Yau (see [1], p. 75, and [22]) using
the real Monge-Ampère operator. For arbitrary p Ko lodziej’s proof is much more
complicated. It would be interesting to find a simpler PDE proof of Theorem 3.9.

Problem 4. Is the optimal constant in Theorem 3.9 attained for radially symmetric
functions?

In fact, for such functions the estimate is rather simple, see [52].

Another interesting result of Ko lodziej is the following:

Theorem 3.10 ([45]). (3.1) has a bounded solution provided that it has a bounded
subsolution.

Note that this result is a generalization of Theorem 3.3.

Problem 5. Does a continuous subsolution imply a continuous solution?

A psh function u is called maximal in a domain Ω if for any other psh function
v in Ω such that v ≤ u away from a compact subset of Ω we have v ≤ u in Ω. For
n = 1 maximal psh functions are precisely harmonic ones but in higher dimensions
they may be completely irregular: for example psh functions independent of one
variable are maximal.

From Theorems 3.1 and 3.3 we easily infer the following:

Theorem 3.11. A locally bounded psh function u is maximal iff (ddcu)n = 0.

A similar characterization can be proved for functions in D, see [14]. This implies
in particular that maximality in this class is a local notion.

Problem 6. Is maximality a local notion for arbitrary psh function?
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4. Extremal functions

The relative (or Bedford-Taylor) capacity is defined as follows:

c(E,Ω) = sup{

∫

E

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u ≤ 0}.

Here Ω is a bounded domain in Cn and E a Borel subset of Ω. One of the key results
is quasicontinuity of psh functions:

Theorem 4.1 ([5]). If u is psh in Ω then for every ε > 0 there exists open G ⊂ Ω
such that c(G,Ω) < ε and u restricted to Ω \G is continuous.

Using this one can for example obtain a counterpart of Theorem 1.6 for sequences
increasing almost everywhere.

Closely related to the relative capacity is the relative extremal function:

uE,Ω := sup{v ∈ PSH−(Ω) : v|E ≤ −1}.

It turns out that the supremum in the definition of capacity is essentially attained
for this function:

Theorem 4.2 ([7]). Assume that Ω is a bounded hyperconvex domain in Cn and K
is compact subset of Ω. Then

c(K,Ω) =

∫

K

(ddcu∗K,Ω)n.

Exercise 6. Denote Br = B(0, r). Show that for r < R

uB̄r,BR
= max

{
log |z| − logR

logR− log r
,−1

}

and

c(B̄r, BR) =

(
2π

logR− log r

)n

.

Theorem 4.2 was used in [7] to prove the following:

Theorem 4.3. Assume that P ⋐ Ω where Ω is a bounded hyperconvex domain in
C

n. Then the following are equivalent

i) P ⊂ {u = −∞} for some u psh in Ω;

ii) c(P,Ω) = 0.

A set P ⊂ C
n is called locally pluripolar if for every z ∈ P there exists a

naighborhood U and u psh in U such that P ∩ U ⊂ {u = −∞} and globally
pluripolar if P ⊂ {u = −∞} for some u psh in Cn. For a family of psh function
{uα} in Ω locally uniformly bounded from above the sets of the form {u < u∗},
where u = supα uα, are called negligible.

Theorem 4.3 was used in [5] to solve two problems posed by Lelong [50]:
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Theorem 4.4. Locally pluripolar sets are globally pluripolar.

Theorem 4.5. Negligible sets are pluripolar.

Theorem 4.4 is originally due to Josefson [38] who did not use the complex
Monge-Ampère operator.

Global extremal function or Siciak extremal function for a bounded subset E of
Cn is defined by

VE := sup{u ∈ L : u|E ≤ 0},

where

L := {u ∈ PSH(Cn) : u ≤ log+ |z| + C for some constant C}

is the class of entire psh functions with logarithmic growth. One can show that
V ∗
E ∈ L iff E is not pluripolar. One of the crucial results is due to Zakharyuta [59]

who proved that this definition agrees with the original one of Siciak [56]:

Theorem 4.6. For a compact K ⊂ C
n we have

VK = sup{
1

d
log |P | : P is a polynomial of degree ≤ d such that |P | ≤ 1 on K}.

Proof. We follow Demailly [26]. We clearly have ≥. Fix z0 ∈ Cn and b < a < VK(z0).
We can find v ∈ L with v ≤ 0 on K and v(z0) > a. Replacing v with v ∗ ρε − δ for
appropriate ε and δ we may assume that v ∈ L ∩ C∞, v < 0 on K and v > a on
B̄(z0, r) for some r > 0. We need to find d ≫ 0 and a polynomial P of degree ≤ d
such that |P | ≤ 1 on K and 1

d
log |P (z0)| ≥ b.

Take χ ∈ C∞
0 (B(z0, r)) such that χ = 1 in B(z0, r/2). Define a weight

ϕ := 2dv + 2n log |z − z0| + log(1 + |z|2)

so that

i∂∂̄ϕ ≥
1

(1 + |z|2)2
i∂∂̄|z|2.

By Hörmander’s theorem [37] we can find continuous u with ∂̄u = ∂̄χ and
∫

Cn

|u|2e−ϕdλ ≤

∫

B(z0,r)\B(z0,r/2)

|∂̄χ|2(1 + |z|2)2e−ϕdλ.

Therefore ∫

Cn

|u|2(1 + |z|2)−1|z − z0|
−2ne−2dvdλ ≤ C1e

−2da,

where C1 is independent of d. Since |z − z0|
−2n is not locally integrable near z0, we

see that u(z0) = 0. The function f = χ− u is holomorphic in C
n, f(z0) = 1 and

(4.1)

∫

Cn

|f |2(1 + |z|2)−n−1e−2dvdλ ≤ C2e
−2da,
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where C2 is also independent of d. Since v ≤ log+ |z| + C3 we get in particular
∫

Cn

|f |2(1 + |z|2)−n−1−ddλ <∞

which implies that f is a polynomial of degree at most d − 1. Using the fact that
v ≤ 0 in a neighborhood of K and subharmonicity of |f |2 from (4.1) we also get
that |f |2 ≤ C4e

−2da on K, where C4 is again independent of d (but might depend

on the fixed neighborhood of K). Then P = C
−1/2
4 edaf is a polynomial of degree at

most d− 1, |P | ≤ 1 on K and 1
d

log |P (z0)| = a− logC4

2d
≥ b for d sufficiently big. �

Pluricomplex Green function for a domain Ω in Cn with pole at w ∈ Ω is defined
by

GΩ,w = GΩ(·, w) = supBΩ,w,

where

BΩ,w = {u ∈ PSH−(Ω) : u ≤ log |z| + C for some constant C}.

This definition was originally given in [42] (and independently in a more general
form in [60]).

Exercise 7. Show that GB(w,r),w = log |z−w|
r

.

Exercise 8. Let Ω := {z ∈ C2 : |z1z2| < 1}. Show that

GΩ(z, w) =

{
log

∣∣∣ z1z2−w1w2

1−w̄1w̄2z1z2

∣∣∣ w 6= 0,
1
2

log |z1z2| w = 0.

The above example is due to Klimek [43]. It shows in particular that GΩ need
not be symmetric. The first domain with this property was constructed by Bedford
and Demailly [2].

One can easily show that if Ω is bounded then GΩ,w ∈ BΩ,w. The basic results
for pluricomplex Green function were proved by Demailly [25] who in particular
essentially obtained the following (see also [12]):

Theorem 4.7. If Ω is bounded then (ddcGΩ,w)n = (2π)nδw.

If Ω is hyperconvex then it is easy to show that GΩ,w = 0 on ∂Ω. Demailly [25]
proved more (here we define GΩ(z, w) = 0 for z ∈ ∂Ω, w ∈ Ω):

Theorem 4.8. If Ω is bounded and hyperconvex then GΩ is continuous on Ω̄×Ω\∆
(where ∆ is the diagonal).

Continuity on Ω̄×Ω̄\∆ is still an open problem. Equivalently, we can formulate
this as follows:

Problem 7. For bounded hyperconvex Ω, does GΩ,w converge to 0 locally uniformly
in Ω as w → ∂Ω?
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Herbort [36] showed that this is indeed the case if we assume in addition that
∂Ω is of class C2 (see also [28] and [15] for a simplified proof).

In a general situation one can easily show a slightly weaker result:

Theorem 4.9 ([17]). For bounded, hyperconvex Ω and p <∞ we have

lim
w→∂Ω

||GΩ,w||Lp(Ω) = 0.

Theorem 4.9 will easily follow from the following inequality which can be ob-
tained by successive integrations by parts:

Proposition 4.10 ([8]). Let u, v be nonpositive psh functions in bounded Ω such
that v = 0 on ∂Ω and v is locally bounded. Then

∫

Ω

|v|n(ddcu)n ≤ n!||u||n−1
L∞(Ω)

∫

Ω

|u|(ddcv)n.

Proof of Theorem 4.9. By Theorem 4.7 and Proposition 4.10 we get

(4.2) ||GΩ,w||
n
Ln(Ω) ≤ (2π)nn!||uΩ||

n−1
L∞(Ω)|uΩ(w)|,

where uΩ is given by Corollary 3.8. This gives Theorem 4.9 for p = n and the general
case is left as an exercise to the reader. �

Finally, the following regularity of the Green function is known:

Theorem 4.11 ([11], [10], [33]). If Ω is strongly pseudoconvex with C2,1 boundary
then GΩ,w is C1,1 in Ω̄ \ {w}.

Bedford and Demailly [2] constructed a strongly pseudoconvex domain with C∞

boundary whose Green function is not C2 up to the boundary (this example heavily
relies on a result from [3]).

5. Applications to the Bergman kernel

Recall that the Bergman metric on bounded Ω in Cn is the Kähler metric with
potential logKΩ(z, z). We say that Ω is Bergman complete if it is complete w.r.t.
this metric. The basic result is the following:

Theorem 5.1 ([17], [35]). Hyperconvex domains are Bergman complete.

The prove Theorem 5.1 one uses the following criterion of Kobayashi [44]: Ω is
Bergman complete if

(5.1) lim
w→∂Ω

|f(w)|2

KΩ(w,w)
= 0, f ∈ O ∩ L2(Ω).
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To prove this he used the embedding

(5.2) Ω ∋ w 7−→ [KΩ(·, w)] ∈ P(O ∩ L2(Ω)).

The main observation is that the pull-back of the Fubini-Study metric in P(O ∩
L2(Ω)) is the Bergman metric in Ω.

Zwonek [61] showed that (5.1) is not necessary for Bergman completeness - he
found an example of a bounded domain in C which is Bergman complete but (5.1)
does not hold. This condition however can be slightly relaxed: it was shown in [15]
that if a bounded domain Ω in Cn satisfies

(5.3) lim sup
w→∂Ω

|f(w)|2

KΩ(w,w)
< ||f ||2L2(Ω), f ∈ O ∩ L2(Ω)

then it is Bergman complete.

Problem 8. Does Bergman completeness imply (5.3)?

The main step in the proof of Theorem 5.1 will be the following estimate of
Herbort [35] (see also [23]):

Theorem 5.2. For a pseudoconvex Ω, w ∈ Ω and f ∈ O ∩ L2(Ω) one has

|f(w)|2

KΩ(w,w)
≤ cn

∫

{GΩ,w<−1}

|f |2dλ.

By Theorem 4.9 for hyperconvex Ω we have

lim
w→∂Ω

λ({GΩ,w < −1}) = 0.

Therefore Theorem 5.1 immediately follows from Theorem 5.2 and Kobayashi’s cri-
terion (5.1). Also note that setting f ≡ 1 in Theorem 5.2 we obtain

KΩ(w,w) ≥
1

cnλ({GΩ,w < −1})
≥

1

C(n, diam Ω)|uΩ(w)|
,

where the last inequality follows from (4.2). This gives a quantitative version of the
following results of Ohsawa [51]:

Theorem 5.3. For a bounded hyperconvex Ω one has

lim
w→∂Ω

KΩ(w,w) = ∞.

Proof of Theorem 5.2. Denoting G := GΩ,w define

α := ∂̄(f γ ◦G) = f γ′ ◦G ∂̄G ∈ L2
loc,(0,1)(Ω),

where γ ∈ C∞(R) is such that γ(t) = 1 for t ≤ −2, γ(t) = 0 for t ≥ −1 and |γ′| ≤ 2.
For

ϕ := 2nG+ eG − 1
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we have

iᾱ ∧ α = |f |2(γ′ ◦G)2i∂G ∧ ∂̄G ≤ |f |2(γ′ ◦G)2e−Gi∂∂̄ϕ

which we may with some abuse of notations write

|α|2i∂∂̄ϕ ≤ |f |2(γ′ ◦G)2e−G ≤ 36χ{−2<G<−1}|f |
2

(see [15] or [12]). From Hörmander’s estimate for ∂̄ we obtain u ∈ L2
loc(Ω) solving

∂̄u = α and such that∫

Ω

|u|2e−ϕdλ ≤ 36

∫

{−2<G<−1}

|f |2e−ϕdλ.

Since ϕ < 0 in Ω and ϕ ≥ −4n− 1 on {G > −2}, we will get

||u||L2(Ω) ≤ 6e2n+1||f ||L2({G<−1}).

The function f̃ := f γ ◦ G − u is holomorphic. Moreover, since e−ϕ is not locally

integrable near w, it follows that f̃(w) = f(w). We also have

||f̃ ||L2(Ω) ≤ (1 + 6e2n+1)||f ||L2({G<−1})

and the desired estimate follows. �

Bergman completeness for bounded domains Ω is equivalent to the fact that the
distance given by the Bergman metric, which we denote by dist Ω(z, w), converges
to ∞ as z → ∂Ω and w stays fixed. Theorem 5.1 implies that this is the case for
hyperconvex domains but the method does not give any quantitative estimate from
below for this distance. This was done in [29] and improved in [15] for sufficiently
smooth domains:

Theorem 5.4. Assume that Ω is a bounded pseudoconvex domains with C2 bound-
ary. Then for a fixed w ∈ Ω we have

dist Ω(z, w) ≥
log(1/δΩ(z))

C log log(1/δΩ(z))

where δΩ is the euclidean distance to the boundary and C is independent of z ∈ Ω.

Since the embedding (5.2) is distance decreasing, one can show that

dist Ω(z, w) ≥ arccos
|KΩ(z, w)|√

KΩ(z, z)
√
KΩ(w,w)

(see [15]). This together with Hörmander’s estimate for ∂̄ can be used to prove
the following relation between the Bergman distance and the pluricomplex Green
function:

Theorem 5.5 ([15]). Assume that Ω is bounded and psudoconvex. Then for z, w ∈ Ω
with {GΩ,z < −1} ∩ {GΩ,w < −1} = ∅ we have dist Ω(z, w) ≥ cn > 0.
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Then the proof of Theorem 5.4 boils down to uniform estimates for the Green
function, see [15].

Problem 9. Can the estimate in Theorem 5.4 be improved to

dist Ω(z, w) ≥
1

C
log(1/δΩ(z)) ?

Such an estimate would be optimal. It is known to hold for strongly pseudocon-
vex domains as well as for convex ones (see [15]).

For z ∈ Ω and X ∈ Cn by BΩ(z;X) denote the Levi form of logKΩ, that is

BΩ(z,X) =
∂2

∂λ∂λ
logKΩ(z + λX, z + λX)

∣∣∣∣
λ=0

.

Problem 10. Is it true that for any bounded B-regular Ω and fixed X 6= 0 one has

(5.4) lim
z→∂Ω

BΩ(z;X) = ∞ ?

It would be a counterpart of Theorem 5.1 which really says that for hyperconvex
domains the Bergman distance goes to ∞ at the boundary. Diederich and Herbort
[28] showed that (5.4) holds under additional assumption that ∂Ω is C2 smooth.
Positive answer to Problem 7 for B-regular domains would give

lim
w→w0

diam ({GΩ,w < −1}) = 0, w0 ∈ ∂Ω

and this implies a positive answer to Problem 10 (see [28]).
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