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We will discuss applications of Hérmander’s L2-estimate for O in the
following problems:

1. Suita Conjecture (1972) from potential theory
2. Optimal constant in the Ohsawa-Takegoshi extension theorem (1987)
3. Mabhler Conjecture (1938) from convex analysis



Suita Conjecture

Green function for bounded domain D in C:

AGp(-,z) =27,
Gp(-,2) =0 on 9D (if D is regular)

p(2) i= exp lim (Gp(¢,2) — log|¢ — 2]
(logarithmic capacity of C\ D w.r.t. z)

cpldz| is an invariant metric (Suita metric)

(logep)zz

2

Curve (42| = —
D

Suita Conjecture (1972):  Curvep |z < —1

e “="if D is simply connected

e “<" if D is an annulus (Suita)

e Enough to prove for D with smooth boundary

e “=" on 9D if D has smooth boundary



Curv

cpldz|

for D = {e7® < |z| < 1} as a function of t = —2log |2|
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Curv(iog k), a2 for D = {e7% < |2| < 1} as a function of ¢t = —21log |2|
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where K is the Bergman kernel on the diagonal:

Kp(z) :=sup{|f(2)]> : f € O(D / |£12dx < 1}.

(logep) =nKp  (Suita)

Therefore the Suita conjecture is equivalent to
CQD <nKp.

It is thus an extension problem: for z € D find holomorphic f in D such

that f(z) =1 and
< —
1< ot

Ohsawa (1995), using the methods of the Ohsawa-Takegoshi extension
theorem, showed the estimate

4 < CnKp
with C = 750.

C=2 (B., 2007)
C =1.95388... (Guan-Zhou-Zhu, 2011)



Ohsawa-Takegoshi Extension Theorem (1987)

Q) - bounded pseudoconvex domain in C™, ¢ - psh in

H - complex affine subspace of C™

f - holomorphic in Q' := QN H

Then there exists a holomorphic extension F' of f to € such that

/ |[F|?2e=?d\ < C/ If|2e=%dN,
Q Q
where C' depends only on n and the diameter of .

Siu / Berndtsson (1996): If @ C C*~1 x {|z5, < 1} and H = {z,, = 0}
then C' = 4.

Problem. Can we improve to C = «?

B.-Y. Chen (2011): Ohsawa-Takegoshi extension theorem can be proved
using directly Hormander's estimate for 0-equation!



Mahler Conjecture
K - convex symmetric body in R™

K :={ycR":z.-y<1foreveryzc K}
Mahler volume := A(K)A(K")
Santalé Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mabhler volume is minimized by cubes.

True for n = 2:

Bourgain-Milman (1987): There exists ¢ > 0 such that

4n
AFOAMK') > ¢ .
n:

Mahler Conjecture: ¢ =1

G. Kuperberg (2006): ¢ = 7/4



Equivalent SCV formulation (Nazarov, 2012)
For u € L2(K') we have

13(0)]? = ‘/K wdA

with equality for u = x /. Therefore

2
<MKl 2 ey = @m) A [l 2

AMK') = (2m)™ sup Ifgﬂ
fepr HfHLQ(Rn)

)

where P = {@ : u € L2(K’)} C O(C™). By Paley-Wiener thm the Mahler
Conjecture is equivalent to the following SCV problem: find f € O(C™)
with exponential growth (|f(2)| < Ce€I#l) sth. £(0) =1,

If(iy)] < Ce? @) (qg is Minkowski function for K),
and
™

2)"A(K).

L @@ <t (

Nazarov: One can show the Bourgain-Milman inequality with ¢ = (7/4)3
using Hoérmander's estimate.



Hérmander's Estimate (1965)
) - pseudoconvex in C”, ¢ - smooth, strongly psh in €2

a=3;a;dz; € L?oc,(O,l)(Q)' O =0
Then one can find u € L?, (Q) with du = « and

/Q\u\Qe_‘Pd)\S/Sl\a|?85¢e_¢d>\.

Here |o¢|?65¢ =2k gojE&jak, where (@7F) = (02%0/02;0zk) " is the

length of & w.r.t. the Kahler metric i00.

The estimate also makes sense for non-smooth : instead of |a|f85¢ one
has to take any nonnegative H € L{° () with

iaAa < Hiddp
(B., 2005).



Donnelly-Fefferman (1982)
Q, «, ¢ as before

¥ psh in Q s.th. |5¢‘?aéw < 1 (that is id¢ A Oy < i)
Then one can find u € L7, (Q) with du = « and

/Q lu|?e=?dA < C/Q \aﬁagwe—vw,

where C'is an absolute constant.

Berndtsson (1996)
Q, «, ¢, ¥ as before
Then, if 0 < § < 1, one can find u € L? (Q) with du = « and

loc

4
2ePedN < 7/ 2 gue T PdA.
/S2 [ul"e Sa-e2 o laliag,e

The above constant was obtained in B. 2004 and is optimal (B. 2012).
Therefore C = 4 is optimal in Donnelly-Fefferman.

Berndtsson's estimate is not enough to obtain Ohsawa-Takegoshi (it would
be if it were true for § = 1).



Berndtsson’s Estimate
Q) - pseudoconvex

2 5 —
o€ Lloc,(O,l)_(Q)' da=0
@, ¥ - psh, 0925, <1

Then, if 0 < § < 1, one can find u € LZQOC(Q) with u = a and

4
2eSVmPdN < 7/ 25 SVTPAN
e =00 Joioane

Theorem. Q, «, ¢, Y as aPove
Assume in addition that ‘8w|?85’¢) < § <1 on supp a.

Then there exists u € L2 () solving du = « with
1

2 a,1,12 - 2 —
/Qm (1= 91%5,)e” sodxgmfﬂm\m%ew ¢ dA.

From this estimate one can obtain Ohsawa-Takegoshi and Suita with
C =1.95388... (obtained earlier by Guan-Zhou-Zhu).



Theorem. 2 - pseudoconvex in C”, ¢ - psh in Q

2 50 —
a € Lloc,(O,l)(Q)' Oa=0
NS Wllof (€2) locally bounded from above, s.th.

Bl <1 in Q
W99 1 <5< 1 onsuppo.

Then there exists u € L? () with du = o and

- _ 1+V5 -
2 2 2 2 2
/Q lu]*(1 — |8¢|iaéw)e Y=Pdx < v /Q re% 100,€ Y=dA.

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)

By approximation we may assume that ¢ is smooth up to the boundary
and strongly psh, and v is bounded.

u - minimal solution to du = « in L?(Q,e¥~%)

= u L kerdin L?(Q,e¥ %)

= v:=ue¥ Lkerdin L?(Q,e™%)

= v - minimal solution to Jv = 8 := ¥ (a + udy) in L2(Q, e %)

By Hormander's estimate

2 — 2 —
/Q|v| e ‘pd)\g/ﬂ|ﬁ|ia(§¢e ¢ da.



Therefore

/|u\2 24— “’d/\</ o+ u B[, 2P Pdx
</Q(|a|?8gw+2|u\\/ﬁ|a\iaéw+|u|2H) 2V=¢ g,

— 1 94)|2 i
where H = |81’D‘i85<p' For ¢ > 0 we will get
/ [ul2(1 — H)e2—2d)
Q
< o) 1+t~ 1 a +tlu?(1 — H)| e2¥~%dA
o O‘zf)c’w — u e

1 21)—
(1 +i- >/| Zaéww@d,\
+t/ |u|2(1—H)eQ”’_“’d>\.
Q

We will obtain the required estimate if we take ¢ := 1/(672/2 +1).



Theorem. 2 - pseudoconvex in C™, ¢ - psh in
a € Lloc ©, 1)(Q), Oa =0

veWwh 2( Q) locally bounded from above, s.th.

loc
Bl <1 in Q
109 <§<1 onsuppa.

Then there exists u € L? () with du = o and

_ _ 14+V6 _
2 2 2 2
[ = 1002, e ean < S / a2, 5,,€*P~2dA.

Remarks. 1. Setting ©» = 0 we recover the Hérmander estimate.
2. This theorem implies Donnelly-Fefferman and Berndtsson’s estimates
with optimal constants: for psh ¢, with |31/)\?85w <1landéd <1 set
F=¢+yand =1y
Then 2 5 dd a9 _ 3

en ¢ 90— UJ @ an I ¢‘133~7 4 7
We will get Berndtsson's estimate W|th the constant

1+V5 _ 4
1-Vo—3 1=0)




Theorem (Ohsawa-Takegoshi with optimal constant)

Q - pseudoconvex in C*~1 x D, where 0 € D C C,

¢ - psh in Q, f - holomorphic in Q' := QN {z, =0}

Then there exists a holomorphic extension F' of f to 2 such that

Fl2e=%d) < L/ fI2e=%dN.
JF = o ©@)2 Jo

(For n =1 and ¢ = 0 we obtain the Suita Conjecture.)

Sketch of proof. By approximation may assume that €2 is bounded,
smooth, strongly pseudoconvex, ¢ is smooth up to the boundary, and f is
holomorphic in a neighborhood of €.
e>0

o= 9(f(z")x(—2log |zn])),
where x(t) =0 for t < —2loge and x(c0) = 1.

G :=Gp(-0)
@ =@+ 2G +n(—2G)
= (-2G)

F = f(z")x(—2log|zn|) — u, where u is a solution of du = a given by the
previous thm.



Crucial ODE Problem

Find g € C91(R4), h € CY1(R4) such that &' < 0, " >0,
tlingo(g(t) +logt) = tlﬁl}ngo(h(t) +logt) =0

2
(1 - 7(‘23 ) 29t >



Crucial ODE Problem

Find g € C91(R4), h € CY1(R4) such that &' < 0, " >0,
tl;rr;@(g(t) +logt) = tgr{:o(h(t) +logt) =0

2
(1 - 7(‘23 ) 29t >

and

Solution:

>
~

o~
=

Il

—log(t+e t—1)
—log(t+e "t —1) +log(1 —e™b).

Q@

=~
o~

&
Il



Another approach: general lower bound for the Bergman kernel

Ko(w) =sup{|f(w)?: f € O(Q), [ |fI?d)r <1} (Bergman kernel)

Gq(-,w) =sup{v € PSH™ (), Z@U(v(z) —log |z —w|) < oo}

(pluricomplex Green function)

Theorem. Assume 2 is pseudoconvex in C™. Then for a > 0 and w € Q2

1
Kalw) 2 o @atw) < —ap)”

For n =1 letting a — oo this gives the Suita Conjecture:

cg(w)Q'

Kq(w) >



Theorem. Assume €2 is pseudoconvex in C™. Then for a > 0 and w € Q

Kaq(w) > ! .
e2ra\({Gq(-,w) < —a})

Proof. May assume that €2 is bounded, smooth and strongly pseudoconvex.
G :=Gqw. Will use Donnelly-Fefferman with

¢ :=2nG, 1 :=—log(-G),
a:=0(xoG)=x 0GaIG,
(x will be determined later).
iaha<(x oG)2%idG 0 G < G2 (X o G)%iddy
We will find u € L? (Q) with Ju = o and

loc
/ |u)2d X g/ |u|2e~?dX < c/ G?(x' 0 @)2e™2"CdA.
Q Q Q

0 t> —a

With  x(t) := /—t e~ "ns ds t; a we thus get
a

s

/ [ul2d) < CA({G < —a}).
Q



fi=x0G —u e O(Q) satisfies

fw) =x(-o0) = [~

e*S
—— ds = Ei(na)
na S

(because e~ % is not integrable near w). Also

A< o Gl [lul] < (x(=00) + VO)VA{G < —a}).

Therefore T )|2
K > W fna
20 2 N HR” 2 (G < —a)
where
. - Ei(na)2
"% (Ei(na) + VO)2 '

Tensor power trick. Q:=Qm cCvm, G = (w,...,w), m>0
Kg (@) = (Kaw))™,  Aanm({Gg 5 < —a}) = (A2n({G < —a})™.

Cnm,a
(Kou)™ 2 —
(A2n({G < —a}))™
but
lgn c,ll{::fa = e~ 2na,



Application to the Bourgain-Milman Inequality

K - convex symmetric body in R™
Nazarov: consider the tube domain Tk := int K + iR™ C C™. Then

T 2n 1 n! )\n(K/)

o Q) e O m
Therefore -
A (K)An () > (Z> -

To show the lower bound in (1) we can use the previous estimate:

1
Kq(w) > e2nady, {Ga(,w) < —a})’

By Lempert's theorem we will get as a — oo

weE N, a>0.

Theorem. If Q is a convex domain in C™ then for w €
1
Z N T 7 0
Azn (In(w))
where Ig(w) = {¢'(0) : ¢ € O(A, ), ¢(0) =w} (Kobayashi indicatrix).

Kq(w)



4
Proposition (Nazarov). I, (0) C —(K +iK)
7r
Sketch of proof. For y € K’ consider
F(z) = ®(z - t) € O, A),

where @ : {|Re(| < 1} — A is conformal with ®(0) = 0. By the Schwarz
lemma we will get

4
It (0)C —{z€C":|z-y| <1 forevery y € K'}.
™

2n
Corollary. Aapn (I (0)) < (%) (An(K))?

Conjecture. Aap(I7, (0)) < (%)" ()\n(K))2

™

K (0) 2 (5

4)71 W (equality for cubes)



Lempert (1981)

Q - bounded strongly convex domain in C™ with smooth boundary

» € O(A, Q) NC(A,Q) is a geodesic if and only if p(OA) C 99 and there
exists h € O(A,C™) N C(A,C™) s.th. the vector e?*h(e) is outer normal
to 9 at p(e't) for every t € R.

There exists F' € O(£, A), a left-inverse to ¢ (i.e. F op =1ida) s.th.
(z—p(F(2)) h(F(2)) =0, z€Q.

Lempert's Theory for Tube Domains (S. Zajac)
Q) =Tk = intK + iR™, where K is smooth and strongly convex in R™
Since Im (e?th(eit)) = 0, h must be of the form

h(¢) =@+ (b + CPw

for some w € C™ and b € R™. Therefore

; _ b+ 2Re (e*fw) )
R ity 1 i ,
ep(e) =v ( b+ 2Re (citw)|

where v : 9K — S™~1 is the Gauss map.



By the Schwarz formula

_ 1 /2“ e +¢ _; [ b+ 2Re(etw)
C2mJo et —¢ |b + 2Re (ettw)|

#(0) ) dt + iTm (0).

If K is in addition symmetric then all geodesics in Tk with ¢(0) = 0 are of

the form I o
1 s 7 R T
w(<)=f/ . +Cu*1( e(e.w)>dt
2m Jo et —¢ |Re (e?tw)|

for some w € (C™)4. Then

, 1 /27r it —1 ( Re (e''w) )
ey =) ety [Re (¢itw)|

parametrizes 97, (0) for w € S2n—1L,

Conjecture Aoy (I (0)) < (%)" ()\n(K))2



