ON THE SUITA CONJECTURE
FOR SOME CONVEX ELLIPSOIDS IN \mathbb{C}^2

ZBIGNIEW BLOCKI, WLODZIMIERZ ZWONEK

Abstract. It has been recently shown that for a convex domain Ω in \mathbb{C}^n and $w \in \Omega$ the function $F_\Omega(w) := (K_\Omega(w)\lambda(I_\Omega(w)))^{1/n}$, where K_Ω is the Bergman kernel on the diagonal and $I_\Omega(w)$ the Kobayashi indicatrix, satisfies $1 \leq F_\Omega \leq 4$. While the lower bound is optimal, not much more is known about the upper bound. In general it is quite difficult to compute F_Ω even numerically and the highest value of it obtained so far is 1.010182... In this paper we present precise, although rather complicated formulas for the ellipsoids $\Omega = \{|z_1|^{2m} + |z_2|^2 < 1\}$ (with $m \geq 1/2$) and all w, as well as for $\Omega = \{|z_1| + |z_2| < 1\}$ and w on the diagonal. The Bergman kernel for those ellipsoids had been known, the main point is to compute the volume of the Kobayashi indicatrix. It turns out that in the second case the function $\lambda(I_\Omega(w))$ is not C^3.

Introduction

For a convex domain Ω in \mathbb{C}^n and $w \in \Omega$ the following estimates have been recently established:

\begin{equation}
\frac{1}{\lambda(I_\Omega(w))} \leq K_\Omega(w) \leq \frac{4^n}{\lambda(I_\Omega(w))}.
\end{equation}

Here $K_\Omega(w) = \sup\{|f(w)|^2 : f \in \mathcal{O}(\Omega), \int_\Omega |f|^2 d\lambda \leq 1\}$ is the Bergman kernel on the diagonal and $I_\Omega(w) = \{\varphi'(0) : \varphi \in \mathcal{O}(\Delta, \Omega), \varphi(0) = w\}$ is the Kobayashi indicatrix, where Δ denotes the unit disc. The first inequality in (1) was shown in [3], the proof uses L^2-estimates for $\bar{\partial}$ and Lempert’s theory [9]. It is optimal, for example if Ω is balanced with respect to w (that is every intersection of Ω with a complex line containing w is a disc) then we have equality. It can be viewed as a multi-dimensional version of the Suita conjecture [11] proved in [2] (see also [5] for the precise characterization when equality holds).

The second equality in (1) was proved in [4] using rather elementary methods. It was also shown that the constant 4 can be replaced by $16/\pi^2 = 1.6211\ldots$ if Ω is in addition symmetric with respect to w. We can write (1) as

$$1 \leq F_\Omega(w) \leq 4,$$

where $F_\Omega(w) := (K_\Omega(w)\lambda(I_\Omega(w)))^{1/n}$ is a biholomorphically invariant function in Ω. It is not clear what the optimal upper bound should be. It was in fact quite difficult to prove that one can at all have $F_\Omega > 1$. It was done in [4] for ellipsoids of the form $\{|z_1| + |z_2|^{2m} + \cdots + |z_n|^{2m} < 1\}$, where $m \geq 1/2$ and $w = (b, 0, \ldots, 0)$. The function F_Ω was also computed numerically for the ellipsoid

The first named author was supported by the Ideas Plus grant 0001/ID3/2014/63 of the Polish Ministry Of Science and Higher Education and the second named author by the Polish National Science Centre grant 2011/03/B/ST1/04758.
\(\Omega = \{|z_1|^{2m} + |z_2|^2 < 1\}, \ m \geq 1/2\), based on an implicit formula for the Kobayashi function from [1]. Our first result is the precise formula in this case:

Theorem 1. For \(m \geq 1/2\) define

\[
\Omega_m = \{z \in \mathbb{C}^2: |z_1|^{2m} + |z_2|^2 < 1\}.
\]

Then for \(m \neq 2/3, m \neq 2\) and \(b\) with \(0 \leq b < 1\), we have

\[
\lambda(I_{\Omega_m}((b,0))) = \pi^2 \left[-\frac{m - 1}{2m(3m - 2)(3m - 1)} b^{6m+2} - \frac{3(m - 1)}{2m(m - 2)(m + 1)} b^{2m+2}
+ \frac{m}{2(m - 2)(3m - 2)} b^6 - \frac{3m}{3m - 1} b^4 - \frac{4m - 1}{2m} b^2 + \frac{m}{m+1} \right].
\]

For \(m = 2/3\) and \(m = 2\) one has

\[
\lambda(I_{\Omega_{2/3}}((b,0))) = \frac{\pi^2}{80} \left(-65b^6 + 40b^6 \log b + 160b^4 - 27b^{10/3} - 100b^2 + 32 \right),
\]

\[
\lambda(I_{\Omega_{2}}((b,0))) = \frac{\pi^2}{240} \left(-3b^{14} - 25b^6 - 12b^6 \log b + 288b^4 - 420b^2 + 160 \right).
\]

The general formula for the Kobayashi function for \(\Omega_m\) is known, see [1], but it is implicit in the sense that it requires solving a nonlinear equation which is polynomial of degree \(2m\) if it is an integer. It turns out however that the volume of the Kobayashi indicatrix for \(\Omega_m\), that is the set where the Kobayashi function is not bigger than 1, can be found explicitly. It would be interesting to check whether Theorem 1 also holds in the non-convex case, that is when \(0 < m < 1/2\) (see [10] for computations of the Kobayashi metric in this case).

The formula for the Bergman kernel for this ellipsoid is well known (see e.g. [7], Example 6.1.6):

\[
K_{\Omega_m}(w) = \frac{1}{\pi^2} (1 - |w_2|^2)^{1/m-2} (1/(m+1) - |w_2|^2)^{1/m} (1/(m+1)) |w_1|^2
/ \left((1 - |w_2|^2)^{1/m} - |w_1|^2 \right)^3,
\]

so that

\[
K_{\Omega_m}(b,0) = \frac{m+1 + (1-m)b^2}{\pi^2 m(1-b^2)^3}.
\]
The graphs of $F_{Ω_m}((b,0))$ in Figure 1 are consistent with the graphs from [4] obtained numerically using the implicit formula from [1]. Note that for $t ∈ ℝ$ and $a ∈ Δ$ the mapping

$$Ω_m \ni z \mapsto \left(e^{it} \frac{(1 - |a|^2)^{1/2m}}{(1 - az)^{1/m}} z_1, \frac{z_2 - a}{1 - az} \right)$$

is a holomorphic automorphism of $Ω_m$ and therefore $F_{Ω_m}((b,0))$ where $0 ≤ b < 1$ attains all values of $F_{Ω_m}$ in $Ω_m$. One can show numerically that

$$\sup_{m \geq 1/2} \sup_{Ω_m} F_{Ω_m} = 1.010182 \ldots$$

which was already noticed in [4]. This is the highest value of $F_Ω$ (in arbitrary dimension) obtained so far.

In [4] it was also shown that for $Ω = \{|z_1| + |z_2| < 1\}$ and b with $0 < b < 1$ one has

$$λ(I_{Ω}((b,0))) = \frac{π^2}{6} (1 - b)^4 ((1 - b)^4 + 8b),$$

so that in particular similarly as in Theorem 1 it is an analytic function on this part of $Ω$. This raises a question whether $λ(I_{Ω}(w))$ is smooth in general. In [4] it was also predicted that the highest value of $F_{Ω}$ for convex $Ω$ in $ℂ^2$ should be attained for for $Ω = \{|z_1| + |z_2| < 1\}$ on the diagonal. The following result will answer both of these questions in the negative:

Theorem 2. Let $Ω = \{z ∈ ℂ^2: |z_1| + |z_2| < 1\}$. Then for b with $0 ≤ b ≤ 1/4$ we have

$$λ(I_{Ω}((b,b))) = \frac{π^2}{6} (30b^8 - 64b^7 + 80b^6 - 80b^5 + 76b^4 - 16b^3 - 8b^2 + 1)$$

and when $1/4 ≤ b < 1/2$

$$λ(I_{Ω}((b,b))) = \frac{2πb(1 - 2b)^3 (-2b^3 + 3b^2 - 6b + 4)}{3(1 - b)^2} + \frac{π (30b^{10} - 124b^9 + 238b^8 - 176b^7 - 260b^6 + 424b^5 - 76b^4 - 144b^3 + 89b^2 - 18b + 1)}{6(1 - b)^2} \times \arccos \left(-1 + \frac{4b - 1}{2b^2}\right)$$

$$+ \frac{π(1 - 2b) (-180b^7 + 444b^6 - 554b^5 + 754b^4 - 1214b^3 + 922b^2 - 305b + 37) \sqrt{4b - 1}}{72(1 - b)}$$

$$+ \frac{4πb(1 - 2b)^4 (7b^2 + 2b - 2)}{3(1 - b)^2} \arctan \sqrt{4b - 1}$$

$$+ \frac{4πb^2(1 - 2b)^4 (2 - b)}{(1 - b)^2} \arctan \frac{1 - 3b}{(1 - b)\sqrt{4b - 1}}.$$

The function

$$b \mapsto λ(I_{Ω}((b,b)))$$

is C^3 on the interval $(0, 1/2)$ but not $C^{3,1}$ at $1/4$.
Again, the formula for the Bergman metric for this ellipsoid is known, see [6] or [7], Example 6.1.9:

\[
K_\Omega(w) = \frac{2}{\pi^2} \cdot \frac{3(1 - |w|^2)^2(1 + |w|^2) + 4|w_1|^2|w_2|^2(5 - 3|w|^2)}{((1 - |w|^2)^2 - 4|w_1|^2|w_2|^2)^3},
\]

so that

\[
(4) \quad K_{\Omega}(b,b) = \frac{2(3 - 6b^2 + 8b^4)}{\pi^2(1 - 4b^2)^3}.
\]

The first part of Theorem 2, formula (2) on the interval \((0, 1/4)\), is easier to prove than the second one. Combining it with (4) one can obtain the graph of \(F_{\Omega}(b,b)\) for \(b \in (0, 1/4)\), it is shown in Figure 2.

Fig. 2. \(F_{\Omega}(b,b)\) for \(\Omega = \{|z_1| + |z_2| < 1\}\) and \(b \in (0, 1/4)\)

One can show that its analytic continuation to \((0, 1/2)\) attains values below 1 and thus it follows already from (1) that \(F_{\Omega}\) cannot be analytic. To conclude that it is in fact not \(C^{3,1}\) one has to prove much harder formula (3).

Fig. 3. The continuation of \(F_{\Omega}(b,b)\) from Fig. 2 to \((0,1/2)\) and the actual graph there

One can check that the maximal value of \(F_{\Omega}(b,b)\) for \(b \in (0, 1/2)\) is 1.008902...
SUITA CONJECTURE FOR SOME CONVEX ELLIPSOIDS IN \mathbb{C}^2

All pictures and numerical computations in this paper, as well as a lot of formal ones in the proofs of Theorems 1 and 2 have been done using Mathematica.

1. General formula for geodesics in convex complex ellipsoids

Boundary of the Kobayashi indicatrix of a convex domain Ω at w consists of the vectors $\varphi'(0)$ where $\varphi \in O(\Delta, \Omega)$ is a geodesic of Ω satisfying $\varphi(0) = w$. Theorems 1 and 2 will be proved using a general formula for geodesics in convex complex ellipsoids from [8] based on Lempert’s theory [9] describing geodesics of smooth strongly convex domains.

For $p = (p_1, \ldots, p_n)$ with $p_j \geq 1/2$ set

$$E(p) = \{ z \in \mathbb{C}^n : |z_1|^{2p_1} + \cdots + |z_n|^{2p_n} < 1 \}$$

and $A \subset \{1, \ldots, n\}$ define

$$\varphi_j(\zeta) = \begin{cases} a_j \zeta - \alpha_j \left(\frac{1 - \bar{\alpha}_j \zeta}{1 - \bar{\alpha}_0 \zeta} \right)^{1/p_j}, & j \in A \\ a_j \left(\frac{1 - \bar{\alpha}_j \zeta}{1 - \bar{\alpha}_0 \zeta} \right)^{1/p_j}, & j \notin A \end{cases},$$

where $a_j \in \mathbb{C}^*$, $\alpha_0, \alpha_j \in \Delta$ for $j \in A$, $\alpha_j \in \tilde{\Delta}$ for $j \notin A$,

$$\alpha_0 = |a_1|^{2p_1} \alpha_1 + \cdots + |a_n|^{2p_n} \alpha_n,$$

and

$$1 + |\alpha_0|^2 = |a_1|^{2p_1} (1 + |\alpha_1|^2) + \cdots + |a_n|^{2p_n} (1 + |\alpha_n|^2).$$

A component φ_j has a zero in Δ if and only if $j \in A$. We have

$$\varphi_j(0) = \begin{cases} -a_j \alpha_j, & j \in A \\ a_j, & j \notin A \end{cases},$$

and

$$\varphi_j'(0) = \begin{cases} a_j \left(1 + \frac{1}{p_j} - 1 \right) |\alpha_j|^2 \frac{\alpha_j \bar{\alpha}_0}{p_j}, & j \in A \\ a_j \frac{\bar{\alpha}_0 - \bar{\alpha}_j}{p_j}, & j \notin A \end{cases}.$$

For $w \in E(p)$ the set of vectors $\varphi'(0)$ where $\varphi(0) = w$ forms a subset of $\partial I^K_E(p)(w)$ of a full measure. The geodesics in $E(p)$ are uniquely determined: for a given $w \in E(p)$ and $X \in (\mathbb{C}^n)^*$ there exists unique geodesic $\varphi \in O(\Delta, E(p))$ such that $\varphi(0) = w$ and $\varphi'(0) = X$.

2. Proof of Theorem 1

First note that the formulas for $m = 2/3$ and $m = 2$ easily follow from the first one by approximation. For $\Omega_m = E(m, 1)$ and $w = (b, 0)$ there are two possibilities for a geodesic φ: either φ
crosses the axis \(\{ z_1 = 0 \} \) or it does not. By \(I_{12} \) and \(I_2 \) denote the respective parts of \(I_{\Omega m}(w) \). In the first case \(\varphi \) must be of the form

\[
\varphi(\zeta) = \left(\frac{1 - \alpha_1}{1 - \bar{\alpha}_1 \zeta} \right)^{1/m} \frac{1 - \alpha_2}{1 - \bar{\alpha}_2 \zeta},
\]

where \(\alpha_1, \alpha_2 \in \mathbb{C}_+ \) and \(\alpha_0, \alpha_1, \alpha_2 \in \Delta \) satisfy (5), (6). By (7) and since \(\varphi(0) = (b, 0) \) we have \(a_1 = -b/\alpha_1, \alpha_2 = 0 \) and by (5) \(\alpha_0 = b^{2m} \alpha_1/|\alpha_1|^{2m} \). By (6)

\[
1 + b^{4m}|\alpha_1|^{2-4m} = b^{2m}|\alpha_1|^{-2m} (1 + |\alpha_1|^2) + |a_2|^2,
\]

that is

\[
|a_2|^2 = (1 - b^{2m}|\alpha_1|^{-2m})(1 - b^{2m}|\alpha_1|^{2-2m}).
\]

Since \(\alpha_0, \alpha_1 \in \Delta_\ast \), it follows that \(b < |\alpha_1| < 1 \). Write \(\alpha_1 = -re^{-it}, \alpha_2 = \rho e^{is} \), then by (8) and (9), with \(b < r < 1 \),

\[
\varphi'(0) = \left(\frac{b}{r} + b \left(\frac{1}{m} - 1 \right) r - \frac{b^{2m+1}r^{1-2m}}{m} \right) e^{it}, \sqrt{(1-b^{2m}r^{-2m})(1-b^{2m}r^{2-2m})}e^{is}
\]

\[
= (\gamma_1(r)e^{it}, \gamma_2(r)e^{is}).
\]

The mapping

\[
\Delta \times [0, 2\pi) \times (b, 1) \ni (\zeta, t, r) \mapsto \zeta(\gamma_1(r)e^{it}, \gamma_2(r))
\]

parametrizes \(I_{12} \). We will need a lemma.

Lemma 3. Let \(F(\zeta, z) = \zeta(f(z), g(z)) \) be a function of two complex variables, where \(f \) and \(g \) are \(C^1 \). Then the real Jacobian of \(F \) is equal to \(|\zeta|^2 H(z) \), where

\[
H = |f|^2(|g_z|^2 - |g_z|^2) + |g|^2(|f_z|^2 - |f_z|^2) + 2\text{Re} \left(f\bar{g}(f_z g_z - \bar{f}_z \bar{g}_z) \right).
\]

The proof is left to the reader. For the mapping (10) we can compute that

\[
H = \gamma_1 \gamma_2 (\gamma_1 \gamma_2' - \gamma_1' \gamma_2)
\]

\[
= -\frac{b^2}{m^2}r^{-6m-3} \left[b^{2m} (-mr^2 + m - 1) + r^{2m} \right]\left[r^{2m} ((m - 1)r^2 + m) - (2m - 1)r^2b^{2m} \right]
\]

\[
\times \left[r^2b^{2m} + r^{2m} ((m - 1)r^2 - m) \right]
\]

Since

\[
\int_{\Delta} |\zeta|^2 d\lambda(\zeta) = \frac{\pi}{2},
\]

we obtain

\[
\lambda(I_{12}) = \pi^2 \int_0^1 |H| dr
\]

\[
= \pi^2 \left(\frac{(1 - 2m)^2}{m^2(3m - 1)(3m - 2)} b^{6m+2} - \frac{3}{m^2(m + 1)(m - 2)} b^{2m+2} - \frac{3}{2m^2} b^{4m+2} \right)
\]

\[
+ \frac{m}{2(m - 2)(3m - 2)} b^6 + \frac{3m}{3m - 1} b^4 - \frac{4m^2 - m + 1}{2m^2} b^2 + \frac{m}{m + 1} \right).
\]
To compute the volume of I_2 we consider geodesics of the form
\[
\varphi(\zeta) = \left(a_1 \frac{1 - \bar{\alpha}_1 \zeta}{1 - \bar{\alpha}_0 \zeta}, a_2 \frac{\zeta - \alpha_2}{1 - \bar{\alpha}_0 \zeta} \right),
\]
where $a_1, a_2 \in \mathbb{C}_*$, $\alpha_0, \alpha_2 \in \Delta$, $\alpha_1 \in \bar{\Delta}$ satisfy (5), (6). By (7) and since $\varphi(0) = (b, 0)$ we have $a_1 = b$, $\alpha_2 = 0$ and by (5) $\alpha_0 = b^{2m} \alpha_1$. By (6)
\[
1 + b^{4m} |\alpha_1|^2 = b^{2m} (1 + |\alpha_1|^2) + |a_2|^2,
\]
that is
\[
|a_2|^2 = (1 - b^{2m})(1 - b^{2m}|\alpha_1|^2).
\]
This means that any $\alpha_1 \in \Delta$ is allowed and by (8)
\[
\varphi'(0) = \left(\frac{b(b^{2m} - 1)}{m} \bar{\alpha}_1, a_2 \right) = \left(\frac{b(1 - b^{2m})r}{m} e^{it}, \sqrt{(1 - b^{2m})(1 - b^{2m}r^2)} e^{is} \right),
\]
where $\alpha_1 = -re^{-it}$, $a_2 = pe^{is}$. Similarly as before we have
\[
H = -\frac{b^2(1 - b^{2m})^3 r}{m^2}
\]
and
\[
\lambda(I_2) = \pi^2 \int_0^1 |H| dr = \frac{\pi^2 b^2(1 - b^{2m})^3}{2m^2}.
\]
This combined with (12) finishes the proof of Theorem 1.

3. Proof of Theorem 2

For $\Omega = \mathcal{E}(1/2, 1/2)$ and $w = (b, b)$, where $0 < b < 1/2$, we have by (7)
\[
a_j = \begin{cases}
\frac{-b}{\bar{\alpha}_j}, & j \in A \\
b, & j \notin A
\end{cases}
\]
and by (8)
\[
\varphi'_j(0) = \begin{cases}
2b\bar{\alpha}_0 - b\left(\bar{\alpha}_j + \frac{1}{\alpha_j} \right), & j \in A \\
2b(\bar{\alpha}_0 - \bar{\alpha}_j), & j \notin A
\end{cases}
\]
There are four possibilities for the set A: \emptyset, $\{1\}$, $\{2\}$, and $\{1, 2\}$. Denote the corresponding parts of $I_\Omega(w)$ by I_0, I_1, I_2, and I_{12}, respectively, so that
\[
\lambda(I_\Omega(w)) = \lambda(I_0) + \lambda(I_1) + \lambda(I_2) + \lambda(I_{12})
\]
\[
= \lambda(I_0) + 2\lambda(I_1) + \lambda(I_{12}).
\]

The case $A = \{1, 2\}$
By (5), (6) and (13)

\[(16) \quad \left(\frac{1}{b} + 2b\right)|\alpha_1| |\alpha_2| + 2b\text{Re}(\alpha_1 \overline{\alpha}_2) = (1 + |\alpha_1|^2)|\alpha_2| + (1 + |\alpha_2|^2)|\alpha_1|.
\]

Since the set of \(\alpha \in \Delta^2\) satisfying (16) is \(S^1\)-invariant, let us consider only those \(\alpha\) with \(\alpha_2 > 0\).

If we then replace \(\alpha_1\) with \(\overline{\alpha}_1\) then (16) will still be valid and \(\varphi'(0)\) will be replaced by \(\overline{\varphi'}(0)\). We thus consider

\[(17) \quad \alpha_1 = re^{it}, \quad \alpha_2 = \rho, \quad r, \rho \in (0, 1), \quad t \in (0, \pi);
\]

to get \(\lambda(I_{12})\) we will have to multiply the obtained volume by 2. The condition (16) transforms to

\[(18) \quad \frac{1}{b} + 2b(1 + \cos t) = r + \frac{1}{r} + \rho + \frac{1}{\rho}.
\]

It will be convenient to substitute \(x = r + 1/r, y = t\), and consider the domain

\[(19) \quad U := \{(x, y) \in (2, \frac{1}{b} + 4b - 2) \times (0, \pi) : x < \frac{1}{b} + 2b(1 + \cos y) - 2\}.
\]

We have

\[\alpha_0 = b\left(\frac{\alpha_1}{|\alpha_1|} + \frac{\alpha_2}{|\alpha_2|}\right) = b(e^{it} + 1)
\]

and thus by (14) and (18)

\[\varphi'(0) = b\left(2\overline{\alpha}_0 - \overline{\alpha}_1 - \frac{1}{\alpha_1}, 2\overline{\alpha}_0 - \overline{\alpha}_2 - \frac{1}{\alpha_2}\right)
\]

\[= \left(2b^2(e^{-it} + 1) - b(r + \frac{1}{r})e^{-it}, 2b^2(e^{-it} + 1) - b(\rho + \frac{1}{\rho})\right)
\]

\[= (2b^2 + b(2b - x)e^{-iy}, bx - 1 - 2b^2i \sin y)
\]

\[=: (f(z), g(z)).
\]

The mapping

\[\Delta \times U \ni (\zeta, z) \mapsto \zeta(f(z), g(z))
\]

parametrizes \(I_{12}\). From Lemma 3 and (11) it follows that

\[\lambda(I_{12}) = \pi \iint_U |H|d\lambda,
\]

where \(f, g\) are given by (20), \(U\) by (19) (recall that again we had to multiply by 2) and we can compute that

\[H = b^2 \left[1 - 2b^2(\cos y + 1)\right] \left[-bx^2 + (1 + 2b^2(\cos y + 1))(x - 2b) - 2b(b^2 \cos(2y) + 1)\right].
\]

One can check that \(H > 0\) in \(U\). The region \(U\) may look as shown in Figure 4.
SUITA CONJECTURE FOR SOME CONVEX ELLIPSOIDS IN \mathbb{C}^2

Fig. 4. The region U for $b = 0.2$, $b = 0.25$, and $b = 0.3$

We set

$$y_0 := \begin{cases} \pi, & b \leq 1/4 \\ \arccos \left(-1 + \frac{4b - 1}{2b^2} \right), & b > 1/4 \end{cases},$$

then

$$\lambda(I_{12}) = \pi \int_0^{y_0} \int_{1/b+2b(1+\cos y)^{-2}} H \, dx \, dy.$$

For $b \leq 1/4$ we will get

$$\lambda(I_{12}) = \frac{\pi^2}{6} (1 - 32b^2 + 80b^3 - 12b^4 - 112b^5 + 176b^6 - 192b^7 + 110b^8)$$

and for $b > 1/4$

$$\lambda(I_{12}) = \frac{\pi}{72} (37 - 140b + 270b^2 - 528b^3 + 530b^4 - 712b^5 + 660b^6)(1 - 2b)\sqrt{4b - 1}$$

$$+ \frac{\pi}{6} (1 - 32b^2 + 80b^3 - 12b^4 - 112b^5 + 176b^6 - 192b^7 + 110b^8) \arccos \left(-1 + \frac{4b - 1}{2b^2} \right).$$

The case $A = \{1\}$

By (13) $a_1 = -b/\alpha_1$, $a_2 = b$ and by (5) $\alpha_0 = b(\alpha_1/|\alpha_1| + \alpha_2)$. From (6) we get

$$1 + b^2 \left(1 + \frac{2\text{Re}(\alpha_1\bar{\alpha}_2)}{|\alpha_1|} + |\alpha_2|^2 \right) = \frac{b}{|\alpha_1|}(1 + |\alpha_1|^2) + b(1 + |\alpha_2|^2).$$

We may assume that $\alpha_1 > 0$, then (23) has a solution $\alpha_1 \in (0, 1)$ if and only if $T > 2$, where

$$T = \frac{1}{b} + b(1 + 2\text{Re} \alpha_2 + |\alpha_2|^2) - 1 - |\alpha_2|^2$$

$$= \frac{1}{b} + b - 1 + 2bx - (1 - b)(x^2 + y^2),$$

and we write $\alpha_2 = x + iy$. This means that

$$|\alpha_2 - \frac{b}{1-b}| < \frac{1 - 2b}{\sqrt{b(1-b)}}$$

and the set U will be the intersection of this disc with Δ. By (14) and (23)

$$\varphi'(0) = 2b(b(1+\bar{\alpha}_2) - T/2, b - (1-b)\bar{\alpha}_2)$$
and therefore
\[f = 2b^2(1 + x) - bT - 2b^2yi, \]
\[g = 2b^2 - 2b(1 - b)x + 2b(1 - b)yi. \]

We can compute that
\[H = 4(1 - b)b^2 \left[b^2(1 + 2x) - (1 - b)(1 + b(x^2 + y^2)) \right] \]
\[- 1 + 2b + b^3 - 2b^2(1 - b)x + b(1 - b)^2(x^2 + y^2) \]
\[= 4(1 - b)b^3(b + b^2 - (1 - b)T)(b^2 + 2b - 2 + bT). \]

One can check that \(H > 0 \) everywhere on \(U \).

If \(b \leq 1/4 \) then \(U = \Delta \) and using the polar coordinates in \(\Delta \) and Lemma 3 we will get
\[(25) \]
\[\lambda(I_1) = \frac{2\pi^2}{3}(1 - b)b^2(3 - 9b + 2b^2 + 6b^3 - 6b^4 + 10b^5). \]

For \(b > 1/4 \) it is more convenient to use the polar coordinates in the disk (24) instead:
\[x = \frac{b}{1 - b} + r \cos t, \quad y = r \sin t, \]
then
\[H = 4b^2(1 - 2b)^2 - 4b^4(1 - b)^4r^4. \]

For \(r \) with
\[\frac{1 - 2b}{1 - b} < r < \frac{1 - 2b}{\sqrt{b}(1 - b)} \]
the circles \(\{|\alpha_2 - b/(1 - b)| = r\} \) and \(\{|\alpha_2| = 1\} \) intersect when \(t = \pm t(r) \), where
\[(26) \]
\[t(r) = \arccos \frac{1 - 2b - (1 - b)^2r^2}{2br(1 - b)}. \]

Therefore
\[\lambda(I_1) = \pi^2 \left[\int_0^{(1-2b)/(1-b)} rHdr + \int_{(1-2b)/(\sqrt{b}(1-b))}^{(1-2b)/(1-b)} r(\pi - t(r))Hdr. \right] \]

We can compute the second integral using the following indefinite integrals:
\[(27) \]
\[\int v \arccos \left(\frac{a}{v} - v \right) dv = \frac{1}{4} \sqrt{-a^2 + 2av^2 - v^4 + v^2} \]
\[+ \frac{4a + 1}{8} \arctan \frac{2a - 2v^2 + 1}{2\sqrt{-a^2 + 2av^2 - v^4 + v^2}} + \frac{v^2}{2} \arccos \left(\frac{a}{v} - v \right) + \text{const}, \]
\[\int v^5 \arccos \left(\frac{a}{v} - v \right) dv = \frac{1}{288} (15 + 78a + 80a^2 + (10 + 32a)v^2 + 8v^4) \sqrt{-a^2 + 2av^2 - v^4 + v^2} \]
\[+ \frac{5 + 36a + 72a^2 + 32a^3}{192} \arctan \frac{2a - 2v^2 + 1}{2\sqrt{-a^2 + 2av^2 - v^4 + v^2}} + \frac{v^6}{6} \arccos \left(\frac{a}{v} - v \right) + \text{const}. \]
We will obtain
\[
\lambda(I_1) = -\frac{\pi^2 b (10b^9 - 36b^8 + 54b^7 + 84b^6 - 375b^5 + 414b^4 - 166b^3 - 6b^2 + 21b - 4)}{3(1 - b)^2}
\]
\[+ \frac{\pi b(1 - 2b) (30b^6 - 58b^5 + 43b^4 - 19b^3 - 26b^2 + 32b - 8)}{9(1 - b)} \sqrt{4b - 1}
\]
\[+ \frac{4\pi(1 - 2b)^2 b (2b^2 - 2b - 1)}{3(1 - b)^2} \arccos \frac{3b - 1}{2b^{3/2}}
\]
\[+ \frac{2}{3} \pi (1 - b) b^2 (10b^5 - 6b^4 + 6b^3 + 2b^2 - 9b + 3) \arctan \frac{2b^2 - 4b + 1}{(1 - 2b)\sqrt{4b - 1}}.
\]
for \(b > 1/4\).

The case \(A = \emptyset\)

We have \(a_1 = a_2 = b\) and \(\alpha_0 = b(\alpha_1 + \alpha_2)\). Therefore
\[(29) -b(1 - b)(|\alpha_1|^2 + |\alpha_2|^2) + 2b^2 \text{Re}(\alpha_1 \bar{\alpha}_2) + 1 - 2b = 0.
\]
Again, we may assume that \(\alpha_1 > 0\). We may also assume that \(\text{Re} \alpha_2 \geq 0\) and then multiply the resulting integral by 2. The equation (29) has a solution \(\alpha_1\) if
\[D := -b(1 - b)^2 |\alpha_2|^2 + b^3 (\text{Re} \alpha_2)^2 + (1 - b)(1 - 2b) \geq 0.
\]
It satisfies \(\alpha_1 < 1\) if
\[Q := \frac{b^{3/2} \text{Re} \alpha_2 + \sqrt{D}}{\sqrt{b}(1 - b)} < 1.
\]
This means that
\[(30) \left| \alpha_2 - \frac{b}{1 - b} \right| > \frac{1 - 2b}{\sqrt{b}(1 - b)}.
\]
By \(U\) we will denote the set of \(\alpha_2 \in \Delta\) satisfying (30). For \(b \leq 1/4\) we have \(U = \emptyset\) and thus \(\lambda(I_0) = 0\) then. This together with (15), (21) and (25) gives (2).

Assume that \(b > 1/4\). By (14)
\[\varphi'(0) = 2b((b - 1)Q + b\bar{\alpha}_2, bQ + (b - 1)\bar{\alpha}_2),
\]
so that,
\[f = 2b((b - 1)Q + bx) - 2b^2 y i
\]
\[g = 2b(bQ + (b - 1)x) + 2b(1 - b)y i.
\]
One can compute that
\[H = \frac{16b^3(1 - 2b)^3}{1 - b} \left(1 + \frac{b^{3/2}x}{\sqrt{D}} \right).
\]
By Lemma 3
\[\lambda(I_0) = \pi \int_{-1}^{1 + (4b - 1)/(2b^2)} \int_{y_2(x)}^{1 - x^2} H dydx,
\]
where
\[
y_2(x) = \begin{cases}
0, & -1 \leq x \leq \frac{b^{3/2} + 2b - 1}{\sqrt{b(1-b)}} \\
\frac{(1-2b)^2}{b(1-b)^2} - \left(x - \frac{b}{1-b}\right)^2, & b^{3/2} + 2b - 1 \leq x \leq -1 + \frac{4b - 1}{2b^2}.
\end{cases}
\]

It is clear from this formula that \(\lambda(I_0)\) is analytic for \(b \in (1/4, 1/2)\). We may therefore restrict ourselves to the interval \((1/4, (3 - \sqrt{5})/2)\), then \(0 \notin U\) and we will use polar coordinates in \(\Delta\), that is
\[
x = r \cos t, \quad y = r \sin t.
\]

We will get
\[
\lambda(I_0) = \frac{16\pi b^3(1-2b)^3}{1-b} \int_{r_0}^1 r \left(\arccos \frac{1-3b+b^2-b(1-b)r^2}{2b^2r} - \arctan \frac{\sqrt{4b^4r^2 - (1-3b+b^2-b(1-b)r^2)^2}}{1-b-b^2-b(1-b)r^2} \right) dr,
\]
where
\[
r_0 = \frac{1-2b-b^{3/2}}{\sqrt{b(1-b)}}.
\]

Using (27) one can compute that
\[
\int_{r_0}^1 r \arccos \frac{1-3b+b^2-b(1-b)r^2}{2b^2r} dr = \frac{\pi (2b^3 - 8b^2 + 6b - 1)}{4(b-1)^2b} - \frac{1}{2} \arccos \left(-1 + \frac{4b-1}{2b^2} \right) + \frac{1-2b}{4(b-1)} \sqrt{4b-1} + \frac{(1-2b)^2}{2b(1-b)^2} \arctan \frac{1-3b}{(1-b)\sqrt{4b-1}}.
\]

On the other hand, since
\[
\int \frac{1}{v^2} \arctan \sqrt{-av^2 + v - 1} dv = \frac{1}{2v} \sqrt{-av^2 + v - 1} - \frac{1}{v} \arctan \sqrt{-av^2 + v - 1} - \frac{a}{2} \arctan \frac{2a\sqrt{-av^2 + v - 1} - 2a - 1}{-av^2 - 2a + 1} + \frac{2a - 1}{4} \arctan \frac{(v-2)\sqrt{-av^2 + v - 1} + v-1}{2av^2 - 2v + 2} + \text{const},
\]
we will obtain
\[
\int_{r_0}^1 r \arctan \frac{\sqrt{4b^4r^2 - (1-3b+b^2-b(1-b)r^2)^2}}{1-b-b^2-b(1-b)r^2} dr = \frac{\pi(1-2b)(b+1)}{8(1-b)^2} + \frac{1-2b}{4b(1-b)} \sqrt{4b-1} - \frac{(b+2)(1-2b)}{4b(1-b)} \arctan \frac{1-3b}{(1-b)\sqrt{4b-1}}.
\]

Therefore
\[
\lambda(I_0) = \frac{2\pi b^2(1-2b)^3(-6b^2 + 9b - 2)}{(1-b)^2} - \frac{8\pi b^3(1-2b)^3}{1-b} \arccos \left(-1 + \frac{4b-1}{2b^2} \right) + \frac{4\pi b^2(1-2b)^4(b+2)}{(1-b)^2} \arctan \frac{1-3b}{(1-b)\sqrt{4b-1}}.
\]

(31)
Using the formulas
\[
\arccos\left(-1 + \frac{4b - 1}{2b^2}\right) = \arctan \frac{2b^2 - 4b + 1}{(1 - 2b)\sqrt{4b - 1} + \frac{\pi}{2}},
\]
\[
\arccos\frac{3b - 1}{2b^{3/2}} = \arctan \sqrt{4b - 1} - \arctan \frac{2b^2 - 4b + 1}{(1 - 2b)\sqrt{4b - 1} + \frac{\pi}{2}},
\]
and combining (15), (22), (28) and (31), we get (3) for \(b > \frac{1}{4}\).

Denoting by \(\chi_-\) and \(\chi_+\) the functions defined by the right-hand sides of (2) and (3), respectively, we can compute that at \(1/4\)
\[
\chi_- = \chi_+ = \frac{15887}{196608}\pi^2, \quad \chi'_- = \chi'_+ = -\frac{3521}{6144}\pi^2, \quad \chi''_- = \chi''_+ = -\frac{215}{1536}\pi^2, \quad \chi^{(3)}_- = \chi^{(3)}_+ = \frac{1785}{64}\pi^2,
\]
but
\[
\chi^{(4)}_- = \frac{1549}{16}\pi^2, \quad \chi^{(4)}_+ = \infty.
\]
This shows that our function is \(C^3\) but not \(C^{3,1}\) at \(1/4\). \(\square\)

In fact, using (32) and
\[
\arctan(1/x) = \frac{\pi}{2} - \arctan x, \quad x > 0,
\]
for \(b \in (1/4, 1-1/\sqrt{2})\) the formula (3) can be written as
\[
\lambda(I_\Omega((b, b))) = \frac{\pi^2}{6}(30b^8 - 64b^7 + 80b^6 - 80b^5 + 76b^4 - 16b^3 - 8b^2 + 1)
+ \frac{\pi(1 - 2b)(-180b^7 + 444b^6 - 554b^5 + 754b^4 - 1214b^3 + 922b^2 - 305b + 37)}{72(1 - b)} \sqrt{4b - 1}
+ \frac{4\pi b(1 - 2b)^4(7b^2 + 2b - 2)}{3(1 - b)^2} \arctan \sqrt{4b - 1}
+ \frac{\pi(30b^{10} - 124b^9 + 238b^8 - 176b^7 - 260b^6 + 424b^5 - 76b^4 - 144b^3 + 89b^2 - 18b + 1)}{6(1 - b)^2}
\times \arctan \frac{(1 - 2b)\sqrt{4b - 1}}{2b^2 - 4b + 1}
- \frac{4\pi b^2(1 - 2b)^4(2b)}{(1 - b)^2} \arctan \frac{(1 - b)\sqrt{4b - 1}}{1 - 3b}.
\]

REFERENCES