Estimates for $\bar{\partial}$ and Optimal Constants

Zbigniew Błocki

Dedicated to Professor Yum-Tong Siu on the occasion of his 70th birthday

1 Introduction

The fundamental extension result of Ohsawa-Takegoshi [12] says that if Ω is a pseudoconvex domain and H is an affine complex subspace of \mathbb{C}^n then for any plurisubharmonic φ in Ω ($\varphi \equiv 0$ is an especially interesting case) and any holomorphic f in $\Omega' := \Omega \cap H$ there exists a holomorphic extension F to Ω satisfying the estimate

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \le C\pi \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda', \tag{1}$$

where C is a constant depending only on n and the diameter of Ω .

The original proof of this result used $\bar{\partial}$ -theory on complete Kähler manifolds and complicated commutator identities. This approach was simplified by Siu [13] who used only Hörmander's formalism in \mathbb{C}^n and proved in addition that the constant C depends only on the distance of Ω from H: he showed that if $\Omega \subset \{|z_n| < 1\}$ and $H = \{z_n = 0\}$ then one can take $C = 64/9\sqrt{1 + 1/4e} = 6.80506...$ in (1). This was improved to C = 4 in [1] and C = 1.95388... in [10]. The optimal constant here, C = 1, was recently obtained in [6]. A slightly more general result was shown: if $\Omega \subset \mathbb{C}^{n-1} \times D$ and $0 \in D$ then (1) holds with $C = c_D(0)^{-2}$, where $c_D(0)$ is the logarithmic capacity of $\mathbb{C} \setminus D$ with respect to 0. This gave in particular

Z. Błocki (🖂)

²⁰¹⁰ Mathematics Subject Classification. 32W05, 32D15

Instytut Matematyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland e-mail: Zbigniew.Blocki@im.uj.edu.pl; umblocki@cyf-kr.edu.pl

[©] Springer International Publishing Switzerland 2015

J.E. Fornæss et al. (eds.), *Complex Geometry and Dynamics*, Abel Symposia 10, DOI 10.1007/978-3-319-20337-9_3

a one-dimensional estimate

$$c_D(z)^2 \le \pi K_D(z, z),$$

where K_D is the Bergman kernel, and settled a conjecture of Suita [14].

The main tool in proving the optimal version of (1) was a new L^2 -estimate for $\bar{\partial}$. On one hand, this new result, using some ideas of Berndtsson [2] and B.-Y. Chen [8], easily follows from the classical Hörmander estimate [11]. On the other hand, it also implies some other $\bar{\partial}$ -estimates due to Donnelly-Fefferman and Berndtsson, even with optimal constants as will turn out. Important contribution here is due to B.-Y. Chen [8] who showed that the Ohsawa-Takegoshi theorem, unlike in [12, 13] or [1], can be deduced directly from Hörmander's estimate.

2 Estimates for $\bar{\partial}$

Let Ω be a pseudoconvex domain in \mathbb{C}^n . For

$$\alpha = \sum_{j} \alpha_{j} d\bar{z}_{j} \in L^{2}_{loc,(0,1)}(\Omega)$$

we look for $u \in L^2_{loc}(\Omega)$ solving the equation

$$\bar{\partial}u = \alpha.$$
 (2)

Such *u* always exists and we are interested in weighted L^2 -estimates for solutions of (2).

The classical one is due to Hörmander [11]: for smooth, strongly plurisubharmonic φ in Ω one can find a solution of (2) satisfying

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \le \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda, \tag{3}$$

where

$$|lpha|^2_{i\partial\bar\partial\varphi} = \sum_{j,k} \varphi^{jk} \barlpha_j lpha_k$$

is the length of α with respect to the Kähler metric with potential φ . (Here (φ^{jk}) is the inverse transposed of the complex Hessian $(\partial^2 \varphi / \partial z_j \partial \bar{z}_k)$.) It was observed in [4] that the Hörmander estimate (3) also holds for arbitrary plurisubharmonic φ but one should replace $|\alpha|^2_{i\partial\bar{\partial}\varphi}$ with any nonnegative $H \in L^{\infty}_{loc}(\Omega)$ satisfying

$$i\bar{\alpha} \wedge \alpha \leq H \, i\partial\partial\varphi.$$

Another very useful estimate (see e.g. [7]) for (2) is due to Donnelly-Feffermann [9]: if ψ is another plurisubharmonic function in Ω such that

$$i\partial\psi\wedge\bar{\partial}\psi\leq i\partial\bar{\partial}\psi$$

(that is $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1$) then there exists a solution of (2) with

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \le C \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{-\varphi} d\lambda, \qquad (4)$$

where C is an absolute constant. We will show that C = 4 is optimal here.

The Donnelly-Feffermann estimate (4) was generalized by Berndtsson [1]: if $0 \le \delta < 1$ then we can find appropriate *u* with

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \le \frac{4}{(1 - \delta)^2} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{\delta \psi - \varphi} d\lambda.$$
(5)

This particular constant was obtained in [3] (originally in [1] it was $\frac{4}{\delta(1-\delta)^2}$) and we will prove in Sect. 3 that it is the best possible.

Berndtsson's estimate (5) is closely related to the Ohsawa-Takegoshi extension theorem [12] but the latter cannot be deduced from it directly (it could be if (5) were true for $\delta = 1$). The following version from [5] makes up for this disadvantage: if in addition $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \le \delta < 1$ on supp α then we can find a solution of (2) with

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}) e^{\psi-\varphi} d\lambda \le \frac{1}{(1 - \sqrt{\delta})^2} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{\psi-\varphi} d\lambda.$$
(6)

The best constant in the Ohsawa-Takegoshi theorem that one can get from (6) is 1.95388... (see [5]), originally obtained in [10].

To get the optimal constant 1 in the Ohsawa-Takegoshi theorem the following estimate for $\bar{\partial}$ was obtained in [6]:

Theorem 1 Assume that $\alpha \in L^2_{loc,(0,1)}(\Omega)$ is $\bar{\partial}$ -closed form in a pseudoconvex domain Ω in \mathbb{C}^n . Let φ be plurisubharmonic in Ω and $\psi \in W^{1,2}_{loc}(\Omega)$, locally bounded from above, satisfy $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \leq 1$ in Ω and $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \leq \delta$ on supp α . Then there exists $u \in L^2_{loc}(\Omega)$ solving (2) and such that

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi-\varphi} d\lambda \le \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi-\varphi} d\lambda.$$
(7)

Theorem 1 can be quite easily deduced from the Hörmander estimate (3) using some ideas of Berndtsson [2] and Chen [8], see [6] for details. On the other hand, note that we can recover (3) from Theorem 1 if we take $\psi \equiv 0$. We can also easily

get (5): take $\tilde{\varphi} = \varphi + \psi$ and $\tilde{\psi} = \frac{1+\delta}{2}\psi$. Then $2\tilde{\psi} - \tilde{\varphi} = \delta\psi - \varphi$ and

$$|\bar{\partial}\tilde{\psi}|^2_{i\partial\bar{\partial}\widetilde{\varphi}} \leq rac{(1+\delta)^2}{4} =: ilde{\delta}$$

(since $|\bar{\partial}\psi|^2_{i\bar{\partial}\bar{\partial}\psi} \leq 1$). From (7) we obtain (5) with the constant

$$\frac{1+\sqrt{\tilde{\delta}}}{(1-\sqrt{\tilde{\delta}})(1-\tilde{\delta})} = \frac{4}{(1-\delta)^2}.$$

3 Optimal Constants

We will show that the constant in (5) is optimal for every δ . For $\delta = 0$ this gives C = 4 in the Donnelly-Fefferman estimate (4). We consider $\Omega = \Delta$, the unit disc, $\varphi \equiv 0$ and $\psi(z) = -\log(-\log|z|)$, so that

$$|\psi_{z\bar{z}}|^2 = |\psi_z|^2 = \frac{1}{4|z|^2 \log^2 |z|}.$$

We also take functions of the form

$$v(z) = \frac{\eta(-\log|z|)}{z} \tag{8}$$

for $\eta \in C_0^1([0,\infty))$, and set

$$\alpha := \bar{\partial}v = -\frac{\eta'(-\log|z|)}{2|z|^2} d\bar{z}.$$
(9)

The crucial observation is that v is the minimal solution to $\bar{\partial}u = \alpha$ in $L^2(\Delta, e^{\delta\psi})$. Indeed, using polar coordinates we can easily show that $\{z^n\}_{n\geq 0}$ is an orthogonal system in $L^2(\Delta, e^{\delta\psi}) \cap \ker \bar{\partial}$ and that

$$\langle v, z^n \rangle_{L^2(\Delta, e^{\delta \psi})} = 0, \quad n = 0, 1, \dots$$

Berndtsson's estimate (5) now gives the following version of the Hardy-Poincaré inequality

$$\int_{0}^{\infty} \eta^{2} t^{-\delta} dt \le \frac{4}{(1-\delta)^{2}} \int_{0}^{\infty} (\eta')^{2} t^{2-\delta} dt \tag{10}$$

if $0 \le \delta < 1$ and $\eta \in C_0^1([0,\infty))$.

We are thus reduced to proving that this constant is optimal:

Estimates for $\bar{\partial}$ and Optimal Constants

Proposition 2 The constant $4/(1-\delta)^2$ in (10) cannot be improved.

Proof Set

$$\eta(t) = \begin{cases} t^{-a}, & 0 < t \le 1\\ t^{-b}, & t \ge 1. \end{cases}$$

Then both left and right-hand sides of (10) are finite iff $a < (1 - \delta)/2$ and $b > (1 - \delta)/2$. Assuming this, and since $\eta(t)$ is monotone and converges to 0 as $t \to \infty$, we can find an appropriate approximating sequence in $C_0^1([0, \infty))$. Thus (10) holds also for this η . We compute

$$\int_0^\infty \eta^2 t^{-\delta} dt = \frac{1}{1 - \delta - 2a} + \frac{1}{\delta - 1 + 2b}$$

and

$$\int_0^\infty (\eta')^2 t^{2-\delta} dt = \frac{a^2}{1-\delta-2a} + \frac{b^2}{\delta-1+2b}$$

The ratio between these quantities is equal to

$$\frac{2}{(1-\delta)(a+b)-2ab}$$

and it tends to $4/(1-\delta)^2$ as both *a* and *b* tend to $(1-\delta)/2$.

Finally, since the same argument would work for any radially symmetric weights in Δ or an annulus $\{r < |z| < 1\}$ where $0 \le r < 1$, from (5) with α given by (9) and φ , ψ of the form $\varphi = g(-\log |z|)$, $\psi = h(-\log |z|)$ we can get the following weighted Poincaré inequalities:

Theorem 3 Let g, h be convex, decreasing functions on $(0, \infty)$. Assume in addition that h is C^2 smooth, h'' > 0 and $(h')^2 \le h''$. Then, if $0 \le \delta < 1$, for $\eta \in C_0^1([0, \infty))$ one has

$$\int_0^\infty \eta^2 e^{\delta h - g} dt \le \frac{4}{(1 - \delta)^2} \int_0^\infty \frac{(\eta')^2}{h''} e^{\delta h - g} dt.$$

Theorem 4 Let g, h be convex functions on (0, T), where $0 < T \le \infty$. Assume that h is C^2 smooth, h'' > 0 and $(h')^2 \le h''$. If $0 \le \delta < 1$ it follows that for any $\eta \in W_{loc}^{1,2}((0,T))$ with

$$\int_0^T \eta e^{\delta h - g} dt = 0 \tag{11}$$

we have

$$\int_0^T \eta^2 e^{\delta h - g} dt \le \frac{4}{(1 - \delta)^2} \int_0^T \frac{(\eta')^2}{h''} e^{\delta h - g} dt$$

provided that both integrals exist.

The condition (11) is necessary to ensure that in the case of an annulus the solution given by (8) is minimal in the $L^2(\{r < |z| < 1\}, e^{\delta \psi - \varphi})$ -norm: it is enough to check that it is perpendicular to every element of the orthogonal system $\{z^k\}_{k \in \mathbb{Z}}$ in ker $\overline{\partial}$. For $k \neq -1$ it is sufficient to use the fact that the weight is radially symmetric and for k = -1 one has to use (11).

References

- 1. Berndtsson, B.: The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Ann. Inst. Fourier **46**, 1083–1094 (1996)
- Berndtsson, B.: Weighted estimates for the ∂-equation. In: Complex Analysis and Geometry, Columbus, 1999. Ohio State University Mathematical Research Institute Publications, vol. 9, pp. 43–57. Walter de Gruyter, Berlin/New York (2001)
- 3. Błocki, Z.: A note on the Hörmander, Donnelly-Fefferman, and Berndtsson L^2 -estimates for the $\overline{\partial}$ -operator. Ann. Pol. Math. **84**, 87–91 (2004)
- Błocki, Z.: The Bergman metric and the pluricomplex Green function. Trans. Am. Math. Soc. 357, 2613–2625 (2005)
- 5. Błocki, Z.: On the Ohsawa-Takegoshi extension theorem. Univ. Iag. Acta Math. 50, 53–61 (2012)
- Błocki, Z.: Suita conjecture and the Ohsawa-Takegoshi extension theorem. Invent. Math. 193, 149–158 (2013)
- Błocki, Z.: A lower bound for the Bergman kernel and the Bourgain-Milman inequality. In: Klartag, B., Milman, E. (eds.) Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 2011–2013. Lecture Notes in Mathematics, vol. 2116, pp. 53–63, Springer, Cham (2014)
- 8. Chen, B.-Y.: A simple proof of the Ohsawa-Takegoshi extension theorem. arXiv: 1105.2430v1
- Donnelly, H., Fefferman, C.: L²-cohomology and index theorem for the Bergman metric. Ann. Math. 118, 593–618 (1983)
- Guan, Q., Zhou, X., Zhu, L.: On the Ohsawa-Takegoshi L² extension theorem and the Bochner-Kodaira identity with non-smooth twist factor. J. Math. Pures Appl. 97, 579–601 (2012)
- 11. Hörmander, L.: L^2 estimates and existence theorems for the $\hat{\partial}$ operator. Acta Math. **113**, 89–152 (1965)
- Ohsawa, T., Takegoshi, K.: On the extension of L² holomorphic functions. Math. Z. 195, 197– 204 (1987)
- Siu, Y.-T.: The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi. In: Geometric Complex Analysis, Hayama, 1995, pp. 577–592. World Scientific, Singapore (1996)
- Suita, N.: Capacities and kernels on Riemann surfaces. Arch. Ration. Mech. Anal. 46, 212–217 (1972)