A note on the Hörmander, Donnelly-Fefferman, and Berndtsson
L^2-estimates for the $\bar{\partial}$-operator

by Zbigniew Błocki (Kraków)

Abstract. We give upper and lower bounds for constants appearing in the L^2-
estimates for the $\bar{\partial}$-operator due to Donnelly–Fefferman and Berndtsson.

1. Introduction. Let Ω be a pseudoconvex domain in \mathbb{C}^n and suppose that a form
\[\alpha = \sum_{j=1}^{n} \alpha_j dz_j \in L^2_{\text{loc},(0,1)}(\Omega) \]
is $\bar{\partial}$-closed (that is, $\bar{\partial} \alpha = 0$, which means that $\partial \alpha_j / \partial z_k = \partial \alpha_k / \partial z_j$, $j, k = 1, \ldots, n$). The equation
\[\bar{\partial} u = \alpha \]
(which is equivalent to the system of equations $\partial u / \partial z_j = \alpha_j$, $j = 1, \ldots, n$) always has a solution $u \in L^2_{\text{loc},(0,1)}$ and the difference of any two solutions of (1) is a holomorphic function in Ω (see [6]). A slight modification of the proof of Hörmander’s estimate [6, Lemma 4.4.1] (see e.g. [4, Théorème 4.1]) shows that for every smooth, strongly plurisubharmonic function φ in Ω we can find a solution to (1) satisfying
\[\int_{\Omega} |u|^2 e^{-\varphi} \, d\lambda \leq \int_{\Omega} |\alpha|^2_{i \partial \bar{\partial} \varphi} e^{-\varphi} \, d\lambda. \]
By $|\alpha|_{i \partial \bar{\partial} \varphi}$ we understand the pointwise norm of α with respect to the Kähler metric $i \partial \bar{\partial} \varphi$, that is,
\[|\alpha|^2_{i \partial \bar{\partial} \varphi} = \sum_{j,k=1}^{n} \varphi^{j} \bar{\alpha}_j \alpha_k, \]

2000 Mathematics Subject Classification: Primary 32W05.
Key words and phrases: $\bar{\partial}$-equation, plurisubharmonic function, L^2-estimate.
Partially supported by KBN Grant #2P03A03726.
where \((\varphi^j^k)\) is the inverse transposed matrix of \(\left(\partial^2 \varphi / \partial z_j \partial z_k\right)\). The function \(|\alpha|^2_{i\partial \bar{\partial} \varphi}\) is the least function \(H\) satisfying

\[
\iota \alpha \wedge \alpha \leq H i \partial \bar{\partial} \varphi,
\]

and one can obtain the estimate \((H)\) for an arbitrary plurisubharmonic function \(\varphi\) in \(\Omega\), where instead of \(|\alpha|^2_{i\partial \bar{\partial} \varphi}\) we take a function \(H\) satisfying (2) (see [3] for the approximation argument based on the proof of [6, Theorem 4.4.2]).

A very useful variation of the Hörmander estimate \((H)\) was proved by Donnelly and Fefferman [5]. Let in addition \(\psi\) be a plurisubharmonic function in \(\Omega\) satisfying

\[
i \partial \psi \wedge \bar{\partial} \psi \leq i \partial \bar{\partial} \psi.
\]

This is equivalent to the fact that the function \(-e^{-\psi}\) is plurisubharmonic, that is,

\[\psi = -\log(-v)\]

for a certain negative plurisubharmonic function \(v\) in \(\Omega\). Then one can find a solution to (1) with

\[
(DF) \quad \int_{\Omega} |u|^2 e^{-\varphi} \, d\lambda \leq C \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{-\varphi} \, d\lambda,
\]

where \(C\) is an absolute constant.

Berndtsson [1] showed that for any \(\delta\) with \(0 < \delta < 1\) one can find a solution to (1) with

\[
(B) \quad \int_{\Omega} |u|^2 e^{-\varphi + \delta \psi} \, d\lambda \leq \frac{4}{\delta(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{-\varphi + \delta \psi} \, d\lambda,
\]

where \(\varphi\) and \(\psi\) are as above. The Berndtsson estimate easily implies the Donnelly–Fefferman estimate—it is enough to consider the function \(\varphi + \delta \psi\) instead of \(\varphi\). The best choice for \(\delta\) is then \(\delta = 1/3\), one then gets \(C = 27\) in the Donnelly–Fefferman estimate. In [2] Berndtsson showed that the estimate \((B)\) follows easily from the Hörmander estimate \((H)\). Using his arguments it was shown in [3] that the constant in the Berndtsson estimate can be improved to \(1/\delta(1-\sqrt{\delta})^2\). From this with \(\delta = 1/4\) one gets \(C = 16\) in \((DF)\).

By \(C_B(\delta)\) denote the best constant in the Berndtsson estimate. Then \(C_{DF} = C_B(0)\) is the best constant in the Donnelly–Fefferman estimate. The goal of this note is to show the following result.

Proposition. We have

\[
\frac{4}{(1-\delta)(2-\delta)} \leq C_B(\delta) \leq \frac{4}{(1-\delta)^2}, \quad 0 \leq \delta < 1.
\]

Corollary. \(2 \leq C_{DF} \leq 4\).
Note that
\[\frac{4}{(1 - \delta)^2} < \frac{1}{\delta(1 - \sqrt{\delta})^2} < \frac{4}{\delta(1 - \delta)^2}, \quad 0 < \delta < 1, \]
so the upper bound is an improvement of the constants from [1] and [3]. Concerning the lower bound, it was noted already in [1] that the best constant cannot be better than \(C/(1 - \delta) \), so that in particular the Berndtsson estimate does not hold for \(\delta = 1 \).

Proofs. Using the Berndtsson argument (see the proof of [2, Lemma 2.2]) we first prove the estimate

\[(3) \quad \int_{\Omega} |u|^2 e^{-\varphi + \delta \psi} d\lambda \leq \frac{4}{(1 - \delta)^2} \int_{\Omega} He^{-\varphi + \delta \psi} d\lambda, \]

where \(i\bar{\alpha} \wedge \alpha \leq H i\bar{\partial} \partial \psi \), that is, the upper bound in the proposition. We will just choose the constants more carefully than in [2]. Due to the approximation argument from [3] we may assume that \(\Omega \) is bounded and \(\varphi, \psi \) are smooth and continuous up to the boundary. Then for any real \(a \) we have the equality of sets

\[L^2(\Omega, e^{-\varphi - a\psi}) = L^2(\Omega). \]

Let \(u \) be the minimal solution to (1) in the \(L^2(\Omega, e^{-\varphi - a\psi}) \)-norm (\(a \) will be specified later). This means that \(u \) is perpendicular to the subspace \(H^2(\Omega) \) of square integrable holomorphic functions in \(\Omega \) in the Hilbert space \(L^2(\Omega, e^{-\varphi - a\psi}) \), that is,

\[\int_{\Omega} u \bar{f} e^{-\varphi - a\psi} d\lambda = 0, \quad f \in H^2(\Omega). \]

Let \(v := e^{b\psi} u \), where \(b \in \mathbb{R} \) will be specified later. Then

\[\int_{\Omega} v \bar{f} e^{-\varphi - (a+b)\psi} d\lambda = 0, \quad f \in H^2(\Omega). \]

This means that \(v \) is a minimal solution to the equation

\[\bar{\partial} v = \beta \]

in the \(L^2(\Omega, e^{-\varphi - (a+b)\psi}) \)-norm, where

\[\beta = \bar{\partial}(e^{b\psi} u) = e^{b\psi}(\alpha + bu \bar{\partial} \psi). \]

If \(P, Q \) are any \((1, 0) \)-forms then for any \(t > 0 \) we have

\[
i(P + Q) \wedge (\bar{P} + \bar{Q})
= (1 + t)iP \wedge \bar{P} + (1 + t^{-1})iQ \wedge \bar{Q} - ti(P - t^{-1}Q) \wedge (\bar{P} - t^{-1}\bar{Q})
\leq (1 + t)iP \wedge \bar{P} + (1 + t^{-1})iQ \wedge \bar{Q}.\]
Therefore
\[i\beta \wedge \beta \leq e^{2b\psi}[(1+t)\iota\bar{\alpha} \wedge \alpha + (1+t^{-1})b^2|u|^2i\bar{\partial}\psi \wedge \bar{\partial}\psi] \]
\[\leq e^{2b\psi}[(1+t)H + (1+t^{-1})b^2|u|^2]i\partial\bar{\partial}\psi \]
\[\leq \frac{e^{2b\psi}}{a+b}[(1+t)H + (1+t^{-1})b^2|u|^2]i\partial\bar{\partial}(\varphi + (a+b)\psi) \]

provided that \(a+b > 0 \). From the Hörmander estimate (H) applied to the form \(\beta \) and the function \(\varphi + (a+b)\psi \) we obtain
\[\int \Omega |v|^2 e^{-\varphi-(a+b)\psi} d\lambda \leq \frac{1}{a+b} \int \Omega [(1+t)H + (1+t^{-1})b^2|u|^2]e^{-\varphi+(b-a)\psi} d\lambda. \]

Thus, taking \(b = a + \delta \), we get
\[\int \Omega |u|^2 e^{-\varphi+\delta\psi} d\lambda \leq \frac{1+t}{2a+\delta} \int \Omega He^{-\varphi+\delta\psi} d\lambda \]
\[+ \frac{(1+t^{-1})(a+\delta)^2}{2a+\delta} \int \Omega |u|^2 e^{-\varphi+\delta\psi} d\lambda. \]

We now only have to minimize the positive values of the function
\[\frac{1+t}{2a+\delta} = \frac{t(1+t)}{t(2a+\delta) - (1+t)(a+\delta)^2} \]
for \(t > 0 \) and \(a > -\delta/2 \). The minimum is easily shown to be attained for \(a = -\delta + t/(1+t) \) and \(t = (1+\delta)/(1-\delta) \) (then \(a = (1-\delta)/2 \)). For these values of \(a \) and \(t \) we obtain (3).

To get the lower bound in the proposition we will use the following lemma.

Lemma. Let \(\Omega = \Delta \) be the unit disc in \(\mathbb{C} \). Set \(\alpha = d\bar{z} \) and assume that \(F \) is a nonnegative, continuous, radially symmetric (that is, \(F(z) = \gamma(|z|) \)) function in \(\Delta \). Then the function \(u(z) = \bar{z} \) is the minimal solution to (1) in the \(L^2(\Delta,F) \)-norm (provided that \(u \) belongs to \(L^2(\Delta,F) \), that is, \(\int_0^1 r^3\gamma(r) dr < \infty \)).

Proof. We have to show that
\[\int f\bar{u}F d\lambda = 0, \quad f \in \mathcal{O}(\Delta) \cap L^2(\Delta,F). \]

Write
\[f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in \Delta, \]
where the convergence is uniform on every circle in Δ. Therefore
\[
\int f \overline{u} F \, d\lambda = 2\pi \sum_{n=0}^{\infty} a_n r^{n+2} \gamma(r) \int_0^{2\pi} e^{i(n+1)t} \, dt \, dr = 0. \]

We now consider the estimate (B) with $n = 1$, $\Omega = \Delta$, $\varphi = 0$ and $\psi(z) = -\log(-\log |z|)$. In this case the least value of the left-hand side of (B) is attained for $u(z) = \overline{z}$. Then
\[
\int_{\Delta} |u|^2 e^{-\varphi + \delta \psi} \, d\lambda = 2\pi \int_0^1 r^3 (-\log r)^{-\delta} \, dr
\]
and
\[
\int_{\Delta} |\alpha|^2 e^{-\varphi + \delta \psi} \, d\lambda = 8\pi \int_0^1 r^3 (-\log r)^{2-\delta} \, dr = \pi \frac{(2-\delta)(1-\delta)}{2} \int_0^1 r^3 (-\log r)^{-\delta} \, dr
\]
after double integration by parts.

References

