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Abstract For pseudoconvex domains in Cn we prove a sharp lower bound for the
Bergman kernel in terms of volume of sublevel sets of the pluricomplex Green
function. For n D 1 it gives in particular another proof of the Suita conjecture.
If � is convex then by Lempert’s theory the estimate takes the form K�.z/ �
1=�2n.I�.z//, where I�.z/ is the Kobayashi indicatrix at z. One can use this to
simplify Nazarov’s proof of the Bourgain-Milman inequality from convex analysis.
Possible further applications of Lempert’s theory in this area are also discussed.

1 Introduction

For a domain� in Cn and w 2 � we are interested in the Bergman kernel

K�.w/ D supfjf .w/j2 W f 2 O.�/;
ˆ
�

jf j2d�2n � 1g

and in the pluricomplex Green function with pole at w

G�;w D supfu 2 PSH�.�/ W lim sup
z!w

.u.z/� log jz � wj/ < 1g

(Here PSH� denotes the class of negative plurisubharmonic functions.)
Our main result is the following bound:

Theorem 1. Assume that � is pseudoconvex. Then for w 2 � and a � 0 we have

K�.w/ � 1

e2na�2n.fG�;w < �ag/ : (1)

This estimate seems to be very accurate. It is certainly optimal in the sense that
if � is a ball centered at w then we get equality in (1) for all a. It is useful and
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not trivial already for n D 1. Note that in this case if we let a tend to 1 then we
immediately obtain

K� � 1

�
c2�; (2)

where

c�.z/ D exp.lim
�!z

.G�;z.�/� log j� � zj//

is the logarithmic capacity of Cn� with respect to z. This is precisely the inequality
conjectured by Suita [19] and recently proved in [5].

A lower bound of the Bergman kernel in terms of the volume of the sublevel sets
of the Green function follows from an estimate of Herbort (Proposition 3.6 in [10]
with f � 1). The main point in (1) is that the constant is optimal. Our proof of (1)
uses the L2-estimate for the N@-equation of Donnelly-Fefferman [8] from which we
can first get a weaker version:

K�.w/ � c.n; a/

�2n.fG�;w < �ag/ ;

where

c.n; a/ D
�

Ei .na/

Ei .na/C 2

�2

and

Ei .b/ D
ˆ 1

b

ds

ses
(3)

(for b > 0). Then we employ the tensor power trick and use the fact that

lim
m!1 c.nm; a/1=m D e�2na:

This way we get an optimal constant in (1).
Our new proof of the one-dimensional estimate (2) makes crucial use of many

complex variables. The use of the tensor power trick here replaces a special ODE in
[5]. It should be noted though that this works only for the Suita conjecture, we do
not get the Ohsawa-Takegoshi extension theorem from Theorem 1.

It is probably interesting to investigate the limit of the right-hand side of (1) as
a tends to 1 also in higher dimensions. We suspect that it always exists, at least
for sufficiently regular domains. This way we would get a certain counterpart of
logarithmic capacity in higher dimensions. Using Lempert’s theory [15,16] one can
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check what happens with this limit for smooth and strongly convex domains, see
Proposition 3 below. This way we get the following bound:

Theorem 2. Let � be a convex domain in Cn. Then for w 2 �

K�.w/ � 1

�2n.I�.w//
;

where

I�.w/ D f' 0.0/ W ' 2 O.�;�/; '.0/ D wg

is the Kobayashi indicatrix (here � denotes the unit disc).

One can use Theorem 2 to simplify Nazarov’s approach [17] to the
Bourgain-Milman inequality [6]. For a convex symmetric body (i.e. open, bounded)
L in Rn its dual is given by

L0 WD fy 2 R
n W x � y � 1 for all x 2 Lg:

The product �n.L/�n.L0/ is called a Mahler volume ofL. It is independent of linear
transformations and on an inner product in Rn, and thus depends only on the finite
dimensional Banach space structure whose unit ball is L. The Blaschke-Santaló
inequality says that the Mahler volume is maximized by balls.

On the other hand, the still open Mahler conjecture states that it is minimized by
cubes. A partial result in this direction is the Bourgain-Milman inequality [6] which
says that there exists c > 0 such that

�n.L/�n.L
0/ � cn

4n

nŠ
: (4)

The Mahler conjecture is equivalent to saying that we can take c D 1 in (4).
Currently, the best known constant in (4) is �=4 and is due to Kuperberg [14].

Nazarov [17] recently proposed a complex-analytic approach to (4). He consid-
ered tube domain TL WD LC iRn and proved the following bounds for the Bergman
kernel at the origin:

KTL.0/ � nŠ

�n
�n.L

0/
�n.L/

(5)

KTL.0/ �
��
4

�2n 1

.�n.L//2
: (6)

This gave (4) with c D .�=4/3. The upper bound (5) was obtained relatively easily
from Rothaus’ formula for the Bergman kernel in tube domains (see [18] and [12]):
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KTL.0/ D 1

.2�/n

ˆ
Rn

d�n

JL
;

where

JL.y/ D
ˆ
L

e�2x�yd�n.x/:

For the lower bound (6) Nazarov used the Hörmander estimate [11] for N@.
We will show that (6) follows easily from Theorem 2. It should be noted however

that although we are using the Donnelly-Fefferman estimate here, it can be deduced
quite easily from the Hörmander estimate (see [1]), so the latter still plays a crucial
role.

We conjecture that in fact the following lower bound holds:

KTL.0/ �
��
4

�n 1

.�n.L//2
: (7)

Since we have equality for cubes, this would be optimal. In Sect. 4 we discuss
possible applications of Lempert’s theory to this problem.

The author learned about the Nazarov paper [17] from professor Vitali Milman
during his visit to Tel Aviv in December 2011. He is also grateful to Semyon Alesker
for his invitation and hospitality.

2 Proofs of Theorems 1 and 2

Proof of Theorem 1. By approximation we may assume that � is bounded and
hyperconvex, so that by [7] the Green functionG WD G�;w is continuous on N�nfwg.
We may also assume that a > 0, as for a D 0 it is enough to take f � 1 in the
definition of the Bergman kernel. Set

' WD 2nG;  WD � log.�G/
and

˛ WD N@.� ıG/ D .�0 ıG/ N@G;
where � will be determined later. We have

i N̨ ^ ˛ � .�0 ıG/2i@G ^ N@G � G2.�0 ıG/2i@N@ :

By the Donnelly-Fefferman estimate [8] (see also [1, 2], and [3] for a formulation
with non-smooth weights which is needed here) we can find u 2 L2loc.�/ solving
N@u D ˛ and such that
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ˆ
�

juj2d�2n �
ˆ
�

juj2e�'d�2n � C

ˆ
�

G2.�0 ıG/2e�2nGd�2n;

where C is an absolute constant (in fact, the optimal one is C D 4, see [2, 4]). We
now set

�.t/ WD
(
0 t � �a;´ �t
a

e�ns

s
ds; t < �a;

so that
ˆ
�

juj2d�2n � C �2n.fG < �ag/:

The function f WD � ıG � u is holomorphic and since � ıG is continuous, we see
that u must be continuous. We also have u.w/ D 0 because e�' is not integrable near
w (by monotonicity of the Green function we haveG�.z;w/ � log jz � wj � log r if
B.z; r/ � �). Therefore

f .w/ D �.�1/ D Ei .na/

with Ei given by (3). We also have (with jj � jj denoting the L2-norm in �)

jjf jj � jj� ıGjj C jjujj � .�.�1/C p
C/

p
�2n.fG < �ag/:

Therefore

K�.w/ � jf .w/j2
jjf jj2 � c.n; a/

�2n.fG < �ag/ ;

where

c.n; a/ D Ei .na/2

.Ei .na/C p
C/2

:

We are now going to use the tensor power trick. For a big natural number m
consider the domain e� D �m in Cnm and ew D .w; : : : ;w/ 2 e�. Then

Ke�.ew/ D .K�.w//
m

and by [13] (see also [9])

Ge�;ew.z1; : : : ; zm/ D max
jD1;:::;m G.z

j /;



58 Z. Błocki

therefore

�2nm.fGe�;ew < �ag/ D .�2n.fG < �ag/m:

It follows from the previous part that

.K�.w//
m � c.nm; a/

.�2n.fG < �ag//m

and it is enough to use the fact that

lim
m!1 c.nm; a/1=m D e�2na:

ut
Theorem 2 follows immediately from Theorem 1 and the following result by

approximation.

Proposition 3. Assume that � is a bounded, smooth, strongly convex domain in
Cn. Then for any w 2 �

lim
a!1 e2na�2n.fG�;w < �ag/ D �2n.I�.w//: (8)

Proof. Denote I WD I�.w/, G WD G�;w, we may assume that w D 0. By the results
of Lempert [15] there exists a diffeomorphismˆ W NI ! N� such that for v 2 @I the
mapping� 3 � 7! ˆ.�v/ is a geodesic in �, that is

G.ˆ.�v// D log j�j: (9)

(ˆ can be treated as an exponential map for the Kobayashi distance.) We also have

ˆ.�v/ D �v CO.j�j2/:

By (9)

fG < �ag D ˆ.e�aint I /

and therefore

�2n.fG < �ag/ D
ˆ
e�aI

Jacˆd�2n:

Since ˆ0.0/ is the identity, we obtain (8). ut



A Lower Bound for the Bergman Kernel and the Bourgain-Milman Inequality 59

3 Applications to the Bourgain-Milman Inequality

Assume that L is a convex symmetric body in R
n. In view of Theorem 2, in order

to prove Nazarov’s lower bound (6) it is enough to show the estimate

�2n.ITL.0// �
�
4

�

�2n
.�n.L//

2: (10)

But this follows immediately from the following:

Proposition 4. ITL.0/ � 4

�
. NLC i NL/.

Proof. We will use an idea of Nazarov [17] here. Let ˆ be a conformal mapping
from the strip fjRe �j < 1g to � with ˆ.0/ D 0, so that jˆ0.0/j D �=4. For u 2 L0
we can then define F 2 O.TL;�/ by F.z/ D ˆ.z � u/. For ' 2 O.�; TL/ with
'.0/ D 0 by the Schwarz lemma we have j.F ı '/0.0/j � 1. Therefore j' 0.0/ � uj �
4=� and �

4
ITL.0/ � LC, where

LC D fz 2 C
n W jz � uj � 1 for all u 2 L0g � NLC i NL:

ut
It will be convenient to use the notation JL WD �

4
ITL.0/, so that by the proof of

Proposition 4

JL � LC � NLC i NL: (11)

We thus have �2n.JL/ � .�n.L//
2 but we conjecture that

�2n.JL/ �
��
4

�n
.�n.L//

2: (12)

Note that JŒ�1;1�n D �n, so that we have equality for cubes. The inequality (12)
would give the optimal lower bound for the Bergman kernel in tube domains (7).

We first give an example that (11) cannot give us (12):

Example. Let L D fx21 C x22 < 1g be the unit disc in R2. One can then show that
LC D fjzj2 � 1C .x1y2 � x2y1/

2g and

�4.LC/ D 2�2

3
>
�4

16
D

��
4

�2
.�2.L//

2:
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4 Lempert’s Theory in Tube Domains

Our goal is to approach (12) using Lempert’s theory. First assume that� is bounded,
smooth, strongly convex domain in C

n. Then for any z;w 2 �, z ¤ w, there exists
unique extremal disc ' 2 O.�;�/ \ C1. N�; N�/ such that '.0/ D w, '.	/ D z for
some 	 with 0 < 	 < 1, and

G�;w.'.�// D log j�j; � 2 �:

Lempert [15] showed in particular the following characterization of extremal discs:
a disc ' 2 O.�;�/ \ C. N�; N�/ is extremal if and only if '.@�/ � @� and there
exists h 2 O.�;Cn/\C. N�;Cn/ such that the vector eith.eit/ is outer normal to @�
at '.eit/ for every t 2 R.

Lempert [15] also proved that for every extremal disc ' in � there exists a
left-inverse F 2 O.�;�/ (that is F.'.�// D � for � 2 �). It solves the equation

.z � '.F.z/// � h.F.z// D 0; z 2 �: (13)

Now assume that L is a smooth, strongly convex body in Rn. Although TL is
neither bounded nor strongly convex, we may nevertheless try to apply Lempert’s
condition for extremal discs (the details have been worked out by Zając [20]). First
note that h 2 O.�;Cn/ \ C. N�;Cn/ in our case must be such that eith.eit/ is an
outer normal to TL and therefore its imaginary part vanishes:

Im .e�ith.eit// D 0; t 2 R: (14)

It follows that h must be of a very special form:

Lemma 5 ([20]). If h 2 O.�/\C. N�/ satisfies (14) then h.�/ D aC b�C Na�2 for
some a 2 C and b 2 R.

Proof. Set a WD h.0/. Then for � 2 @�

0 D Im

�
h.�/

�

�
D Im

�
h.�/ � a

�
� Na�

�

and therefore

h.�/ � a
�

� Na� D b 2 R; � 2 N�:

ut
We thus see that in our case h must be of the form

h.�/ D w C �b C �2 Nw; � 2 N�;
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for some w 2 Cn and b 2 Rn. Take the extremal disc ' for TL associated with h.
Since eith.eit/ is an outer normal to TL at '.eit/ and its imaginary part vanishes, it
follows that its real part is an outer normal to L at Re .'.eit//. Therefore

Re '.eit/ D 
�1
�
b C Re .e�itw/

jb C Re .e�itw/j
�
; (15)

where


 W @L ! S
n�1

is the Gauss map.
For ' 2 O.�/ \ C. N�/ we can recover the values of ' in � from the values of

Re ' on @� using the Schwarz formula:

'.�/ D 1

2�

ˆ 2�

0

eit C �

eit � � Re '.eit/ dt C i Im'.0/; � 2 �:

Therefore extremal discs satisfying (15) are given by

'.�/ D 1

2�

ˆ 2�

0

eit C �

eit � � 

�1

�
b C Re .e�itw/

jb C Re .e�itw/j
�

dt C i Im'.0/; � 2 �:

We now assume that L is in addition symmetric and then consider the case when
b D 0 and Im'.0/ D 0:

'.�/ D 1

2�

ˆ 2�

0

eit C �

eit � � 

�1

�
Re .e�itw/

jRe .e�itw/j
�

dt: (16)

Since L is symmetric the function B.t/ under the integral in (16) satisfies B.t C
�/ D �B.t/. We thus have '.0/ D 0 and one can show (see [20] for details) that
all geodesics of TL passing through the origin are given by (16). They are bounded
and smooth up to the boundary if Re w and Im w are linearly independent in Rn. If
Re w and Im w are linearly dependent (and w ¤ 0) then (16) gives special extremal
discs of the form

'.�/ D ˆ�1.�/ x; x 2 @L;

where ˆ is as in the proof Proposition 4. Left-inverses to these ' are then given by
F.z/ D ˆ.z � u/ for unique u 2 @L0 with x � u D 1.

For geodesics (16) we have

' 0.0/ D 1

�

ˆ 2�

0

eit 
�1
�

Re .eitw/

jRe .eitw/j
�

dt: (17)
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These vectors parametrize the boundary of the Kobayashi indicatrix IL.0/. If F 2
O.�;�/ is the left-inverse of ' satisfying (13) we get, since h0.0/ D 0,

F 0.0/ D w

' 0.0/ � w
:

Therefore

JL D fz 2 C
n W jz � wj � j‰.w/j for all w 2 .Cn/�g; (18)

where

‰.w/ D 1

4

ˆ 2�

0

eitw � 
�1
�

Re .eitw/

jRe .eitw/j
�

dt:

Both (17) and (18) give a description of the set JL. It would be interesting to try
to use it to prove (12). We can at least show this for a ball:

Example. Let B D fjxj < 1g be the unit ball in Rn. For w 2 .Cn/� we have

Im‰.w/ D 1

4

ˆ 2�

0

Im .eitw/ � Re .eitw/

jRe .eitw/j dt D �1
4

ˆ 2�

0

d

dt
jRe .eitw/jdt D 0

and thus

‰.w/ D 1

4

ˆ 2�

0

jRe .eitw/jdt � �p
8

jwj:

By (18) JB is contained in a ball with radius �=
p
8 in Cn. Therefore

�2n.JB/ � �3n

8nnŠ
:

On the other hand,

�n.B/ D �n=2

�.n
2

C 1/
;

and we see that (12) holds for B if n � 3. To show this also for n D 2 we have to
use in addition Proposition 4: JB � . NB C i NB/ \ .r0 NB/, where r0 D �=

p
8. With

�0 D
q
r20 � 1 we will get

�4.JB/ � �2�20C�2
ˆ 1

�0

�.r20��2/d� D �6

256
C�4

16
��

2

2
<
�4

16
D

��
4

�2
.�2.B//

2:
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