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Abstract This is a relatively self-contained introduction to recent developments in the
∂̄-equation, Ohsawa–Takegoshi extension theorem and applications of pluripotential
theory to the Bergman kernel and metric. The main tools are the Hörmander L2-
estimate for ∂̄ and Bedford–Taylor’s theory of the complex Monge–Ampère operator.
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434 Z. Błocki

1 Introduction

Holomorphic functions of several variables are precisely solutions to the homogeneous
Cauchy–Riemann equation (often called the ∂̄-equation)

∂̄u = 0. (1.1)

Here both sides are forms of type (0,1) which is a rather special case of the ∂̄-equation
because all solutions, even in the distributional sense, have to be smooth, in contrast
to the general case of the equation for (p, q)-forms. The inhomogeneous ∂̄-equation

∂̄u = α, (1.2)

where α is a ∂̄-closed (0,1)-form, plays a fundamental role in the PDE approach to the
theory of several complex variables: it is the main tool for constructing holomorphic
functions. The basic idea is very simple: if α = ∂̄χ for some function χ and u is a
solution to (1.2) then u − χ is holomorphic.

The famous L2-estimate of Hörmander [65] asserts that for every smooth strongly
plurisubharmonic function ϕ defined in a pseudoconvex open subset of C

n there exists
a solution to (1.2) satisfying

∫
�

|u|2e−ϕdλ ≤
∫
�

|α|2
i∂∂̄ϕ

e−ϕdλ. (1.3)

The original Hörmander estimate was slightly weaker: the right-hand side depended
on the minimal eigenvalue of the complex Hessian of ϕ but his method also gives
this slightly stronger version (it was first formulated by Demailly [42]). This turns out
to be an extremely powerful result as will be again demonstrated here. What makes
this approach so useful is a big abundance of plurisubharmonic functions: they are
usually much easier to construct than holomorphic functions and this is in fact where
pluripotential theory comes into play.

As we will see, Hörmander’s estimate (1.3) can also be formulated for non-smooth
ϕ. In many cases an almost optimal choice for the weight ϕ in this and related estimates
is

ϕ = 2nG�(·, w),

where G�(·, w) is the pluricomplex Green function with pole at w. This is because
it is essentially the largest negative plurisubharmonic function such that e−ϕ is not
locally integrable nearw. This is the main reason why pluripotential theory turned out
to be so useful in the theory of the ∂̄-equation.

The complex Monge–Ampère operator (ddc)n plays the central role in pluripo-
tential theory, it has been developed in this context by Bedford and Taylor [1,2]. For
example, Demailly [43] characterized the pluricomplex Green function as a solution
to the Monge–Ampère equation with point-mass on the right-hand side. This, together
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Cauchy–Riemann meet Monge–Ampère 435

with standard techniques for the complex Monge–Ampère operator, e.g. integrating
by parts, is often used to prove various properties of the Green function.

One of the most important results in several complex variables has been the Ohsawa–
Takegoshi extension theorem [98]. It states that holomorphic functions can be extended
from lower dimensional sections with L2-estimates. It has found many applications
in complex and algebraic geometry but it can be also very useful to study singularities
of plurisubharmonic functions. For example, it turns out that two main results in this
area, the theorem of Siu [107] on analyticity of level sets of Lelong numbers and
the openness conjecture of Demailly and Kollár [46] follow relatively easily from
the Ohsawa–Takegoshi theorem. The simple proof of the Siu theorem was found by
Demailly [45] who devised a special approximation of an arbitrary plurisubharmonic
function by smooth ones with possibly analytic singularities. The openness conjecture
was first proved by Berndtsson [10] who subsequently simplified the proof in [11] using
an approach of Guan and Zhou [58].

This survey is largely self-contained. It is organized as follows. In Sect. 2 we give
proofs of all necessary L2-estimates for ∂̄ assuming Hörmander’s estimate. It is mostly
thanks to the method of Berndtsson from [5] that they are in fact formal consequences
of (1.3) and one does not have to repeat Hörmander’s arguments. Section 3 contains the
simplest known proof of the Ohsawa–Takegoshi extension theorem. It is due to Chen
[39] (see also [26]) and was the first one which used Hörmander’s estimate directly. In
Sect. 4 we present some applications of the Ohsawa–Takegoshi theorem to singulari-
ties of plurisubharmonic functions with simple proofs of the aforementioned openness
conjecture and Siu’s theorem, as well as basic results on Demailly’s approximation.
Section 5 is a brief introduction to the complex Monge–Ampère operator and the pluri-
complex Green function. Section 6 discusses some applications of pluripotential theory
and the ∂̄-equation to the Bergman metric. In Sect. 7 we present the recently settled
(see [27]) one-dimensional Suita conjecture from [110] and closely related versions of
the Ohsawa–Takegoshi theorem with optimal constant. Another approach to the Suita
conjecture from [28] and its multidimensional version from [31] are also discussed.
The case of convex domains is analysed in greater detail in Sect. 8, following mostly
[31], and it is used in Sect. 9 to present recent Nazarov’s proof [93] of the Bourgain–
Milman inequality [34] from convex analysis. Finally, in Sect. 10 we discuss a link
between the lower bound for the Bergman kernel in terms of the pluricomplex Green
function and possible symmetrization results for the complex Monge–Ampère equa-
tion and complex isoperimetric inequalities. The conclusion of this section is rather
speculative in nature. Many open problems are mentioned throughout the whole paper.

A large part of this paper was written during author’s stay at the Korea Institute for
Advanced Study in Seoul. He is grateful to Mihai Paun and others at KIAS for the
invitation, great hospitality and very stimulating atmosphere.

2 L2-estimates for the ∂̄-equation

We first recall the definition of the operator ∂̄ for functions and (0, 1)-forms (this is
all we will need). For a function u defined on an open subset of C

n set
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436 Z. Błocki

∂̄u :=
∑

j

∂u

∂ z̄ j
d z̄ j

and for a (0,1)-form α = ∑
k αkd z̄k

∂̄α =:
∑

k

∂̄αk ∧ dz̄k =
∑
j<k

(
∂αk

∂ z̄ j
− ∂α j

∂ z̄k

)
dz̄ j ∧ dz̄k .

We will consider the inhomogeneous ∂̄-equation

∂̄u = α (2.1)

which is really a system of n equations with one unknown:

∂u

∂ z̄ j
= α j , j = 1, . . . , n.

Since ∂̄2 = 0, a necessary condition for (2.1) to have a solution is ∂̄α = 0, that is

∂α j

∂ z̄k
= ∂αk

∂ z̄ j
.

Recall that a function ϕ, defined on an open subset of C
n with values in [−∞,∞),

is called plurisubharmonic if locally it is upper semi-continuous, �≡ −∞ and is either
subharmonic or ≡ −∞ on every complex line. Equivalently, the complex Hessian
(∂2ϕ/∂z j ∂̄zk) is positive semi-definite (in the distributional sense). It is in fact an open
problem whether upper semi-continuity in the first definition follows from the other
properties. We use the notation PSH (�) for the set of all plurisubharmonic functions
in � and PSH−(�) for the negative ones. The C2 functions with positive definite
complex Hessian at every point are called strongly plurisubharmonic. An open subset
� ⊂ C

n is called pseudoconvex if it admits a plurisubharmonic exhaustion function,
that is there exists ϕ ∈ PSH (�) such that {ϕ ≤ t} � � for all t ∈ R. A C2 smooth
� is called strongly pseudoconvex if it admits a strongly plurisubharmonic defining
function, that is strongly plurisubharmonic ρ defined in a neighbourhood of �̄ such
that ∇ρ �= 0 on ∂� and � = {ρ < 0}.

The notions of plurisubharmonic and strongly plurisubharmonic functions as well
as pseudoconvex and strongly pseudoconvex sets in C

n correspond closely to that of
convex and strongly convex functions and domains in R

m . In this context, also the
∂̄-operator can be treated as a counterpart of the d-operator, see [7].

We want to formulate Hörmander’s estimate (1.3) also for non-smooth ϕ (see [23]).
Notice that if ϕ is C2 and strongly plurisubharmonic then

H := |α|2
i∂∂̄ϕ

=
∑
j,k

ϕ j k̄ ᾱ jαk,
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Cauchy–Riemann meet Monge–Ampère 437

where (ϕ j k̄) = (∂2ϕ/∂z j ∂̄zk)
−1, is the smallest function satisfying

(ᾱ jαk) ≤ H(∂2ϕ/∂z j ∂̄zk).

This can be written as

i ᾱ ∧ α ≤ Hi∂∂̄ϕ. (2.2)

Note that if the coefficients of α are in L2
loc and H is in L∞

loc then both sides of (2.2) are
well defined currents of order 0 (that is forms with complex measures as coefficients).

We can now state Hörmander’s estimate as follows:

Theorem 2.1 Assume that� is a pseudoconvex open subset of C
n and ϕ ∈ P SH(�).

Let α ∈ L2
loc,(0,1)(�) be ∂̄-closed and take non-negative H ∈ L∞

loc(�) satisfying (2.2).

Then there exists u ∈ L2
loc(�) solving (2.1) and such that

∫
�

|u|2e−ϕdλ ≤
∫
�

He−ϕdλ.

This estimate is easier to prove for n = 1, see [67]. As remarked by Berndtsson [9],
it is therefore quite surprising that it had not been proved earlier in this case. Especially
that it can lead to new nontrivial results in one dimensional complex analysis, see e.g.
[27]. But of course it is especially powerful in higher dimensions. For example the
solution of the Levi problem can be deduced quite easily from Theorem 2.1, see [67,
Corollary 4.2.8].

Sometimes there is however an inconvenience with applying Hörmander’s estimate
directly: ϕ appears both as a weight as well as a Kähler potential on the right-hand side.
The following estimate due to Donnelly and Fefferman [52] (formulated originally for
ϕ ≡ 0) addressed this problem:

Theorem 2.2 Let �, ϕ and α be as in Theorem 2.1. Assume in addition that ψ ∈
P SH(�) is such that

i∂ψ ∧ ∂̄ψ ≤ i∂∂̄ψ. (2.3)

Then there exists u ∈ L2
loc(�) solving (2.1) and such that

∫
�

|u|2e−ϕdλ ≤ C
∫
�

|α|2
i∂∂̄ψ

e−ϕdλ

for some absolute constant C.

Theorem 2.2 is stated here somewhat imprecisely although it is rather clear what
the right statement should be: if ψ is not smooth and strongly plurisubharmonic then
|α|2

i∂∂̄ψ
should be replaced by any non-negative locally bounded H such that i ᾱ∧α ≤

Hi∂∂̄ψ . Plurisubharmonic functions satisfying (2.3) are precisely of the form

ψ = − log(−v)
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438 Z. Błocki

for some v ∈ P SH−(�). It was shown by Berndtsson [5] that Theorem 2.2 is a formal
consequence of Hörmander’s estimate:

Proof of Theorem 2.2 By standard approximation we may assume that ψ is smooth,
strongly plurisubharmonic and that�, ϕ,ψ are bounded. Let u be the solution to (2.1)
which is minimal in the L2(�, e−ϕ−ψ/2)-norm. This means that u is perpendicular to
ker ∂̄ in L2(�, e−ϕ−ψ/2), that is

∫
�

u f̄ e−ϕ−ψ/2dλ = 0, f ∈ ker ∂̄,

and therefore

v := eψ/2u

is the minimal solution to

∂̄v = β,

whereβ = eψ/2
(
α+u ∂̄ψ/2

)
, in the L2(�, e−ϕ−ψ)-norm. (Note that by our regularity

assumptions the spaces L2(�, e−ϕ−ψ/2) and L2(�, e−ϕ−ψ) are the same as sets and
so is ker ∂̄ in both cases.) Theorem 2.1 implies that

∫
�

|v|2e−ϕ−ψdλ ≤
∫
�

|β|2
i∂∂̄(ϕ+ψ)e

−ϕ−ψdλ ≤
∫
�

|β|2
i∂∂̄ψ

e−ϕ−ψdλ,

that is
∫
�

|u|2e−ϕdλ ≤
∫
�

|α + u ∂̄ψ/2|2
i∂∂̄ψ

e−ϕdλ.

By (2.3) for any t > 0

|α + u ∂̄ψ/2|2
i∂∂̄ψ

≤
(

1 + t

2

)
|α|2

i∂∂̄ψ
+
(

1

4
+ 1

2t

)
|u|2

and we obtain the required estimate if we take any t > 2/3, with the optimal choice
t = 2, we then get C = 4. 
�

The idea of twisting the ∂̄-equation seen in the proof of Theorem 2.2 had been used
before but Berndtsson [5] seems to have been the first to realize that it can be applied
directly to Hörmander’s estimate, without repeating the technical parts of its proof
like the so called Bochner–Kodaira identity, integration by parts etc.

The constant C = 4 we got here was originally obtained in [21] and it was shown to
be optimal in [29]. Take� = �, the unit disc in C,ϕ ≡ 0 andψ(z) = − log(− log |z|).
For smooth, compactly supported η on (0,∞) one can show that

u(z) = η(− log |z|)
z
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is the minimal solution to (2.1) in L2(�), where

α = −η
′(− log |z|)

2|z|2 dz̄.

Then by Theorem 2.2

∫ ∞

0
η2dt ≤ 4

∫ ∞

0
(η′)2t2dt, η ∈ W 1,2

0 ((0,∞)),

and one can show the constant 4 cannot be improved here.
The Donnelly–Fefferman estimate was generalized by Berndtsson [4]: he showed

that with the assumptions of Theorem 2.2 and with 0 ≤ δ < 1 one can obtain solution
u satisfying

∫
�

|u|2eδψ−ϕdλ ≤ 4

(1 − δ)2

∫
�

|α|2
i∂∂̄ψ

eδψ−ϕdλ. (2.4)

This particular constant was obtained in [21] and, similarly as above, it was shown in
[29] to be optimal for every δ.

Berndtsson’s estimate is closely related to the Ohsawa–Takegoshi extension theo-
rem, see [4], but the latter cannot be deduced directly from it. If (2.4) were true for
δ = 1 (with some finite constant) then it would be sufficient. Building on an idea of
Chen [40] in his remarkable proof of the extension theorem, this was overcome in
[26]. The following is a counterpart of Berndtsson’s estimate (2.4) for δ = 1:

Theorem 2.3 Let �, ϕ, ψ and α be as in Theorem 2.2. Assume in addition that
|∂̄ψ |2

i∂∂̄ψ
≤ a < 1 on suppα (note that (2.2) means that |∂̄ψ |2

i∂∂̄ψ
≤ 1 in �). Then

we can find a solution u ∈ L2
loc(�) to (2.1) satisfying

∫
�

(
1 − |∂̄ψ |2

i∂∂̄ψ

)
|u|2eψ−ϕdλ ≤ 1 + √

a

1 − √
a

∫
�

|α|2
i∂∂̄ψ

eψ−ϕdλ.

The trade-off compared with the previous estimates is the extra error term on the
left-hand side. On the other hand, this estimate can be used to prove the Ohsawa–
Takegoshi theorem directly as we will see in Sect. 3. It is however not sufficient to get
the extension theorem with optimal constant. A more general one which is sufficient
for that purpose is the following ∂̄-estimate from [27] where only one weight has to
be plurisubharmonic and the other one is essentially arbitrary:

Theorem 2.4 Let�be pseudoconvex in C
n andα ∈ L2

loc,(0,1)(�)be ∂̄-closed. Assume

that ϕ ∈ P SH(�) and ψ ∈ W 1,2
loc (�) which is locally bounded from above satisfy

|∂̄ψ |2
i∂∂̄ϕ

≤
{

1 in �

a < 1 on suppα
.
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440 Z. Błocki

Then there exists u ∈ L2
loc(�) solving (2.1) and such that

∫
�

(
1 − |∂̄ψ |2

i∂∂̄ϕ

)
|u|2e2ψ−ϕdλ ≤ 1 + √

a

1 − √
a

∫
�

|α|2
i∂∂̄ϕ

e2ψ−ϕdλ.

Proof The proof will be similar to that of Theorem 2.2. Again by approximation we
may assume thatψ is smooth, strongly plurisubharmonic and�,ϕ,ψ are bounded. Let
u be the minimal solution to (2.1) in L2(�, eψ−ϕ). Since u is perpendicular to ker ∂̄
in L2(�, eψ−ϕ), it follows that v := ueψ is perpendicular to ker ∂̄ in L2(�, e−ϕ).
Therefore v is the minimal solution to ∂̄v = β := eψ(α + u ∂̄ψ) in L2(�, e−ϕ) and
by Hörmander’s estimate

∫
�

|v|2e−ϕdλ ≤
∫
�

|β|2
i∂∂̄ϕ

e−ϕdλ.

Therefore
∫
�

|u|2e2ψ−ϕdλ ≤
∫
�

|α + u ∂̄ψ |2
i∂∂̄ϕ

e2ψ−ϕdλ

≤
∫
�

(
|α|2

i∂∂̄ϕ
+ 2|u|√H |α|i∂∂̄ϕ + |u|2 H

)
e2ψ−ϕdλ,

where H = |∂̄ψ |2
i∂∂̄ϕ

. For t > 0 we will get

∫
�

|u|2(1 − H)e2ψ−ϕdλ

≤
∫
�

[
|α|2

i∂∂̄ϕ

(
1 + t−1 H

1 − H

)
+ t |u|2(1 − H)

]
e2ψ−ϕdλ

≤
(

1 + t−1 a

1 − a

)∫
�

|α|2
i∂∂̄ϕ

e2ψ−ϕdλ

+t
∫
�

|u|2(1 − H)e2ψ−ϕdλ.

We will obtain the required estimate if we take t = 1/(a−1/2 + 1). 
�
This is the most general ∂̄-estimate of all discussed so far. First of all note that,

unlike the previous ones, it recovers Hörmander’s estimate: it is enough to takeψ ≡ 0
and a = 0. It also easily implies all the previous results with optimal constants. To
obtain Berndtsson’s estimate (2.4) (and thus also Donnelly–Fefferman’s for δ = 0)
for plurisubharmonic ϕ, ψ satisfying (2.2) and δ < 1 set

ϕ̃ := ϕ + ψ, ψ̃ := 1 + δ

2
ψ.

Then 2ψ̃ − ϕ̃ = δψ − ϕ and

|∂̄ψ̃ |2
i∂∂̄ϕ̃

≤ (1 + δ)2

4
=: a.
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Theorem 2.4 will give (2.4) with the constant

1 + √
a

(1 − √
a)(1 − a)

= 4

(1 − δ)2
.

If ϕ, ψ and a are as in Theorem 2.3 and ϕ̃ := ϕ + ψ then |∂̄ψ |2
i∂∂̄ϕ̃

≤ |∂̄ψ |2
i∂∂̄ψ

and

Theorem 2.4 immediately gives Theorem 2.3.

3 Ohsawa–Takegoshi extension theorem

The following theorem proved by Ohsawa and Takegoshi [98] turned out to be one of
the most important results in complex analysis and complex geometry.

Theorem 3.1 Let � be a bounded pseudoconvex open set in C
n and let H be an

affine complex subspace of C
n. Then for any ϕ ∈ PSH (�) and f holomorphic in

�′ := � ∩ H there exists a holomorphic extension F of f in � satisfying

∫
�

|F |2e−ϕdλ ≤ C
∫
�′

| f |2e−ϕdλ′,

where C is a constant depending only on n and the diameter of �.

The original proof from [98] was very complicated: it used abstract Kähler geom-
etry and nontrivial Kähler identities. It was subsequently simplified by Siu [109] and
Berndtsson [4]. The big breakthrough came recently with a very short proof by Chen
[40] who was the first one to succeed in deducing the Ohsawa–Takegoshi theorem
directly from Hörmander’s estimate. In fact he proved even a slightly more general
result, obtained earlier by McNeal and Varolin [91] with more complicated methods:

Theorem 3.2 Assume that � ⊂ C
n−1 ×� is pseudoconvex and let H := {zn = 0}.

Then for any ϕ ∈ P SH(�) and f holomorphic in �′ := � ∩ H there exists a
holomorphic extension F of f in � satisfying

∫
�

|F |2
|zn|2 log2 |zn|e−ϕdλ ≤ C

∫
�′

| f |2e−ϕdλ′,

where C is an absolute constant.

Note that Theorem 3.2 clearly implies Theorem 3.1 by iteration and since
|ζ |2 log2 |ζ | is bounded in �. Theorem 3.2 will easily follow from Theorem 2.3 and
the following completely elementary lemma:

Lemma 3.3 For ζ ∈ C with |ζ | ≤ (2e)−1/2 and ε > 0 sufficiently small set

ψ(ζ ) := − log
[
− log

(
|ζ |2 + ε2

)
+ log

(
− log

(
|ζ |2 + ε2

))]
.

Then ψ is subharmonic in {|ζ | < (2e)−1/2} and there exist constants C1, C2, C3 such
that
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(i)

(
1 − |ψζ |2

ψζζ̄

)
eψ ≥ 1

C1 log2(|ζ |2 + ε2)
on {|ζ | ≤ (2e)−1/2};

(ii)
|ψζ |2
ψζζ̄

≤ C2

− log ε
on {|ζ | ≤ ε};

(iii)
eψ

|ζ |2ψζζ̄
≤ C3 on {ε/2 ≤ |ζ | ≤ ε}.

Proof Write t = 2 log |ζ | and let γ be such that ψ = γ (t). That is

γ = − log(−δ + log(−δ)),

where δ = − log(et + ε2). We have ψζ = γ ′/ζ , ψζζ̄ = γ ′′/|ζ |2 and thus

|ψζ |2
ψζζ̄

= (γ ′)2

γ ′′ .

We have to prove that

(
1 − (γ ′)2

γ ′′

)
≥ −δ + log(−δ)

C1δ2 if t ≤ − log(2e) (3.1)

(γ ′)2

γ ′′ ≤ C2

− log ε
if t ≤ 2 log ε (3.2)

(−δ + log(−δ))γ ′′ ≥ 1

C3
if 2 log(ε/2) ≤ t ≤ 2 log ε. (3.3)

We can compute that

γ ′ = 1 − δ−1

−δ + log(−δ)δ
′

and

γ ′′ ≥ 1 − δ−1

−δ + log(−δ)δ
′′.

Therefore we get (3.3) and since

(γ ′)2

γ ′′ ≤ 1 − δ−1

−δ + log(−δ)
(δ′)2

δ′′
= 1 − δ−1

−δ + log(−δ)et ,

we also obtain (3.1) and (3.2). 
�
Proof of Theorem 3.2 It will be no loss of generality to prove the result in a slightly
smaller disc than�, say the same as in Lemma 3.3. By approximation we may assume
that � is bounded, smooth, strongly pseudoconvex, ϕ is smooth up to the boundary,
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and f is holomorphic in a neighborhood of�′. Let χ ∈ C∞(R) be such that χ(t) = 1
for t ≤ −2, χ(t) = 0 for t ≥ 0, and |χ ′| ≤ 1. For ε > 0 sufficiently small the function
f v, where

v = vε := χ(2 log(|zn|/ε)),

is defined in �. We will use Theorem 2.3 for

α = αε := ∂̄( f v) = f χ ′(2 log(|zn|/ε))dz̄n

z̄n
,

ϕ̃ := ϕ+ 2 log |zn|, and ψ as in Lemma 3.3. We will find u = uε ∈ L2
loc(�) such that

∂̄u = α (in fact u has to be continuous, since f v is) and

∫
�

(1 − |∂̄ψ |2
i∂∂̄ψ

)|u|2eψ−ϕ̃dλ ≤ 1 + √
a

1 − √
a

∫
�

|α|2
i∂∂̄ψ

eψ−ϕ̃dλ, (3.4)

where a = −C2/ log ε by Lemma 3.3ii. For a given ε the function

(
1 − |∂̄ψ |2

i∂∂̄ψ

)
eψ−ϕ̃

is not integrable near H , and thus by (3.4) u = 0 on�′. This means that Fε := f v−u
is a holomorphic extension of f to �. (3.4) together with Lemma 3.3i also give

∫
�

|u|2
|zn|2 log2(|zn|2 + ε2)

e−ϕdλ ≤ C1
1 + √

a

1 − √
a

∫
�

|α|2
i∂∂̄ψ

eψ−ϕdλ′.

Using Lemma 3.3iii we will obtain

lim sup
ε→0

∫
�

|Fε|2
|zn|2 log2 |zn|

|e−ϕdλ ≤ C
∫
�′

| f |2e−ϕdλ′

and it remains to apply the Banach–Alaouglu theorem. 
�

4 Singularities of plurisubharmonic functions

We will start with the following recent result of Berndtsson [10] (proved by Favre and
Jonsson [54] in dimension 2) confirming the openness conjecture of Demailly–Kollár
[46].

Theorem 4.1 For a plurisubharmonic function ϕ defined in a neighbourhood of z0 ∈
C

n the set of those p ∈ R such that e−pϕ is integrable near z0 is an open interval of
the form (−∞, p0).
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The whole point is that the limit p0 does not belong to this set. First of all it is easy
to see that this holds for n = 1. Then ϕ can be written as a sum of a harmonic function
and the potential

Uμ(z) =
∫

C

log |ζ − z|dμ(ζ ),

where μ is a positive measure with compact support in C such that μ = �ϕ/2π near
z0. We may thus assume that ϕ = Uμ and then one can then easily prove that e−pϕ is
integrable near z0 if and only if pμ({z0}) < 2.

The original proof of Theorem 3.1 from [10] was more complicated but Berndtsson
[11] extracted the following simple one from the method of Guan–Zhou [58] who
showed a more general strong openness conjecture, where instead of e−pϕ one is
interested in local integrability of | f |2e−pϕ for some fixed holomorphic f . The proof
of this was simplified by Hiep [64].

Proof of Theorem 4.1 We may assume that z0 is the origin, ϕ is defined in a neigh-
bourhood of �̄n and ϕ ≤ 0. We first claim that if ϕ is not locally integrable near the
origin then

∫
�n−1

e−ϕ(·,zn)dλ′ ≥ cn

|zn|2 , |zn| ≤ 1/2, (4.1)

where cn is a positive constant depending only on n. For a fixed zn we may assume
that the left-hand side of (4.1) is finite. By the Ohsawa–Takegoshi theorem there exists
a holomorphic F in �n such that F(·, zn) = 1 in �n−1 and

∫
�n

|F |2e−ϕdλ ≤ C1

∫
�n−1

e−ϕ(·,zn)dλ′ < ∞. (4.2)

It is elementary that

|F(0, ζ )|2 ≤ C2

∫
�n

|F |2dλ ≤ C2

∫
�n

|F |2e−ϕdλ, |ζ | ≤ 1/2. (4.3)

Since e−ϕ is not locally integrable near the origin, by (4.2) we have F(0, 0) = 0, and
thus by (4.3) and the Schwarz lemma

|F(0, ζ )|2 ≤ C3|ζ |2
∫
�n

|F |2e−ϕdλ, |ζ | ≤ 1/2.

For ζ = zn using (4.2) and the fact that F(0, zn) = 1 we get (4.1).
Now assume that the result is true for functions of n −1 variables and suppose that

∫
�n

e−p0ϕdλ < ∞. (4.4)
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Since for p > p0 we know that e−pϕ is not locally integrable near the origin, by (4.1)

∫
�n−1

e−pϕ(·,zn)dλ′ ≥ cn

|zn|2 , |zn| ≤ 1/2. (4.5)

From (4.4) it follows that for almost all zn ∈ �
∫
�n−1

e−p0ϕ(·,zn)dλ′ < ∞

and thus by the inductive assumption for p sufficiently close to p0

∫
�n−1

e−pϕ(·,zn)dλ′ < ∞.

The Lebesgue dominated convergence theorem now implies that (4.5) also holds for
p = p0 which contradicts (4.4). 
�

It is quite remarkable that to prove a result on plurisubharmonic functions one has
to use tools like holomorphic function and ∂̄-equation.

For a plurisubharmonic ϕ defined in a neighborhood of z0 its Lelong number at z0
is defined by

νϕ(z0) = lim inf
z→z0

ϕ(z)

log |z − z0| = lim
r→0+

ϕr (z0)

log r
,

where

ϕr (z) = max|ζ−z|≤r
ϕ(ζ ). (4.6)

(One can show that ϕr , defined in �r := {z ∈ � : B(z, r) ⊂ �}, is continuous,
plurisubharmonic and decreases to ϕ as r decreases to 0.) In other words, νϕ(z0) is
the maximal number c ≥ 0 such that

ϕ(z) ≤ c log |z − z0| + A

for some constant A and z in a neighbourhood of z0. Lelong number measures the
singularity of a plurisubharmonic function at a point.

The classical result on Lelong numbers is the following due to Siu [107]:

Theorem 4.2 For any plurisubharmonic function ϕ and c ∈ R the superlevel set
{νϕ ≥ c} is analytic.

The original proof in [107] was very complicated. It was later simplified and gen-
eralized by Kiselman [75,77] (see also [66]) and Demailly [44]. It was Demailly [45]
who found a surprisingly simple proof of the Siu theorem using the Ohsawa–Takegoshi
theorem. It was done through the following approximation of plurisubharmonic func-
tions:
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Theorem 4.3 Let ϕ be plurisubharmonic in a bounded pseudoconvex � in C
n. For

m = 1, 2, . . . define

ϕm := 1

2m
log sup

{
| f |2 : f ∈ O(�),

∫
�

| f |2e−2mϕdλ ≤ 1

}
.

Then there exist positive constants C1 depending only on n and the diameter of� and
C2 depending only on n such that

ϕ − C1

m
≤ ϕm ≤ ϕr + 1

m
log

C2

rn
in �r (4.7)

and

νϕ − n

m
≤ νϕm ≤ νϕ. (4.8)

In particular, ϕm → ϕ pointwise and in L1
loc.

Proof By the Ohsawa–Takegoshi theorem for every z ∈ � we can find f ∈ O(�)
such that

∫
�

| f |2e−2mϕdλ ≤ C | f (z)|2e−2mϕ(z) = 1.

This implies that

ϕm(z) ≥ 1

2m
log | f (z)|2 = ϕ(z)− log C

2m

and we obtain the first inequality in (4.7). The proof of the second one is completely
elementary: | f |2 is in particular subharmonic and thus for r < dist (z, ∂�)

| f (z)|2 ≤ 1

λ(B(z, r))

∫
B(z,r)

| f |2dλ ≤ n!
πnr2n

e2mϕr (z)
∫
�

| f |2e−2mϕdλ

which gives the second inequality in (4.7).
Now (4.8) easily follows from (4.7): the first inequality in (4.7) implies that νϕm ≤

νϕ−C1/m = νϕ and the second one gives

ϕr
m ≤ ϕ2r + 1

m
log

C2

rn
,

hence νϕ − n/m ≤ ϕn/m . 
�
Proof of Theorem 4.2 The result is local so we may assume that ϕ is defined in
bounded pseudoconvex domain �. Then by (4.8)

{νϕ ≥ c} =
⋂
m

{
νϕm ≥ c − n

m

}
.
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Let {σ j } be an orthonormal basis of O(�) ∩ L2(�, e−2mϕ). Then

ϕm = 1

2m
log
∑

j

|σ j |2 (4.9)

and one can show that

{
νϕm ≥ c − n

m

}
=

⋂
|α|<mc−n

j

{∂ασ j = 0}

which finishes the proof. 
�
It is interesting that the Ohsawa–Takegoshi theorem also gives the following sub-

additivity of the Demailly approximation from [47]:

Theorem 4.4 Under the assumptions of Theorem 4.3 there exists a positive constant
C3 depending only on n and the diameter of � such that

(m1 + m2)ϕm1+m2 ≤ m1ϕm1 + m2ϕm2 + C3. (4.10)

Proof By the Ohsawa–Takegoshi theorem for every f ∈ O(�) with

∫
�

| f |2e−2(m1+m2)ϕdλ ≤ 1

there exists F ∈ O(�×�) such that F(z, z) = f (z) for z ∈ � and

∫∫
�×�

|F(z, w)|2e−2m1ϕ(z)−m2ϕ(w)dλ(z)dλ(w) ≤ C. (4.11)

Let {σ j } be an orthonormal basis in O(�)∩ L2(�, e−2m1ϕ) and {σ ′
k} an orthonormal

basis in O(�)∩ L2(�, e−2m2ϕ), then {σ j (z)σ ′
k(w)} is an orthonormal basis in O(�×

�) ∩ L2(�×�, e−2m1ϕ(z)−2m2ϕ(w)). If

F(z, w) =
∑
j,k

c jkσ j (z)σ
′
k(w)

then by (4.11)
∑

j,k |c jk |2 ≤ C and thus by the Schwarz inequality and (4.9)

| f (z)|2 = |F(z, z)|2 ≤ C
∑

j

|σ j (z)|2
∑

k

|σ ′
k(z)|2 = Ce2m1ϕm1 (z)e2m2ϕm2 (z).

This gives (4.10) with C3 = log C/2. 
�
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Theorem 4.4 gives monotonicity of a subsequence of ϕm . More precisely, for exam-
ple the sequence ϕ2k + C3/2k+1 is decreasing. It was recently showed by Kim [74]
that in general one cannot expect monotonicity of the entire sequence ϕm , even after
adding a sequence of constants converging to 0.

5 Pluricomplex Green function and the complex Monge–Ampère operator

If � is an open subset of C
n then for z, w ∈ � the pluricomplex Green function is

defined as

G�(z, w) = sup{u(z) : u ∈ B(�,w)},

where B(�,w) is the family of negative plurisubharmonic functions in � that have a
logarithmic pole at w, that is

B(�,w) =
{

u ∈ P SH−(�) : lim sup
z→w

(u(z)− log |z − w|) < ∞
}
.

One can show that for a given w ∈ � we either have G�(·, w) ∈ B(�,w) or
B(�,w) = ∅. This general definition of the pluricomplex Green function was first
given independently by Klimek [78] and Zakharyuta [115]. The fundamental proper-
ties were proved by Demailly [43].

One of the big differences between one and higher dimensional cases is that for
n ≥ 2 the Green function is usually not symmetric. The first example of this kind
is due to Bedford and Demailly [3]. The following simple one was given by Klimek
[79]: for � = {|z1z2| < 1} ⊂ C

2 one can show that

G�(z, w) =
{

log
∣∣∣ z1z2−w1w2

1−w̄1w̄2z1z2

∣∣∣ w �= 0,
1
2 log |z1z2| w = 0.

In particular, G�(z, 0) = 1
2 log |z1z2| but G�(0, z) = log |z1z2|. On the other hand,

it follows from Lempert’s theory [85] that G� is symmetric for convex �.
The main tool when dealing with the pluricomplex Green function is Bedford–

Taylor’s theory of the complex Monge–Ampère operator [1,2]. It is convenient to
consider the operators d = ∂+ ∂̄ and dc := i(∂̄− ∂), so that ddc = 2i∂∂̄ . For smooth
u we then have

(ddcu)n = ddcu ∧ · · · ∧ ddcu = 4nn! det(∂2u/∂z j∂ z̄k) dλ

and one would like to define (ddcu)n as a positive regular measure for arbitrary
plurisubharmonic u. This turned out to be impossible in general. First example was
found by Shiffman and Taylor, see [108]. This was later simplified by Kiselman [76]:
for n ≥ 2 the function

u(z) = (− log |z1|)1/n(|z2|2 + · · · + |zn|2 − 1)
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is plurisubharmonic near the origin, smooth away from {z1 = 0} but (ddcu)n is not
locally integrable near {z1 = 0}.

Bedford and Taylor [2] proved however that it is possible to define (ddcu)n for
locally bounded plurisubharmonic u and Demailly [43] extended this to plurisub-
harmonic functions that are possibly unbounded on a compact subset. In both cases
the operator (ddc)n is continuous in the weak∗ topology of measures for monotone
sequences. In fact, the domain of definition of the complex Monge–Ampère operator,
defined as the maximal subclass of the class of plurisubharmonic functions where the
operator can be defined as a positive measure in such a way that it is continuous for
decreasing sequences, was characterized in [22] and [24]. In particular, for n = 2 these
are precisely the plurisubharmonic functions which belong to the Sobolev space W 1,2

loc .
A plurisubharmonic function u in� is called maximal if for any other v ∈ PSH (�)

such that v ≤ u in�\K for some K � �we have v ≤ u in�. For n = 1 these are pre-
cisely harmonic functions but they may be completely irregular in higher dimensions:
for example if a plurisubharmonic function is independent of one of the variables then
it is maximal. One of the main points of Bedford–Taylor’s pluripotential theory [1,2]
is that for locally bounded plurisubharmonic functions u we have

u is maximal ⇔ (ddcu)n = 0. (5.1)

The same characterization remains true for functions from the domain of definition
of (ddc)n (see [22]) but there are maximal plurisubharmonic functions which do not
belong to the domain of definition, for example log |z1| in C

n for n ≥ 2. It remains
an open problem whether maximality is a local property in general. By the above
characterization as a solution to the homogeneous complex Monge–Ampère equation,
it is true for locally bounded plurisubharmonic functions, or more generally functions
from the domain of definition.

One can show that

G B(w,R)(z, w) = log
|z − w|

R

and thus if B(w, r) ⊂ � ⊂ B(w, R) then

log
|z − w|

R
≤ G�(z, w) ≤ log

|z − w|
r

.

Therefore, if� is bounded then forw ∈ � the function G�(·, w) is plurisubharmonic
and locally bounded in �\{w}. We can then define the Monge–Ampère operator and
Demailly [43] proved that

(ddcG�(·, w))n = (2π)nδw (5.2)

(see also [20]).
A domain � in C

n is called hyperconvex if it admits a negative plurisubharmonic
exhaustion function, that is there exists u ∈ PSH −(�) such that {u < t} � � for
t < 0. For n = 1 this equivalent to � being regular with respect to classical potential
theory. In general, Kerzman and Rosay [73] proved that hyperconvexity is a local
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property of the boundary and Demailly [43] showed that pseudoconvex domains with
Lipschitz boundary are hyperconvex. It is an open problem whether pseudoconvex
domains with continuous boundary have to be hyperconvex.

Demailly [43] showed that if� is bounded and hyperconvex then G� is continuous
on �̄×� away from the diagonal of�, where we extend the definition of G� to vanish
on ∂�×� (see also [19] for a slightly different proof). It is an open problem whether
in this case G� is continuous on �̄×�̄ away from the diagonal of �̄. Equivalently, we
ask whether for bounded hyperconvex� if w j ∈ � is a sequence of poles converging
to ∂� then G�(·, w j ) converge locally uniformly to 0. We have the following weaker
result from [30]:

Proposition 5.1 Assume that � is bounded and hyperconvex. Then for any p < ∞
lim
w→∂�

||G�(·, w)||L p(�) = 0.

Proof By [15] there exists unique u ∈ P SH(�) ∩ C(�̄) such that u = 0 on ∂� and
(ddcu)n = dλ. Write Gw = G�(·, w). Integrating by parts as in [14] we will get
using (5.2)∫

�

|Gw|ndλ =
∫
�

|Gw|n(ddcu)n ≤ n!||u||n−1
L∞(�)

∫
�

|u|(ddcGw)
n ≤ C |u(w)|,

where C depends only on n and the volume of �. This gives the result for p = n and
for other p it follows easily from it. 
�

The conjecture on locally uniform convergence of the Green function for poles
converging to the boundary was confirmed by Herbort [63] for pseudoconvex domains
with C2 boundary (see also [23] for a slightly simplified proof). As in Proposition 5.1,
the inequality for the complex Monge–Ampère operator from [14] is one of the tools.
In fact, the only additional regularity of � used to prove this result is an existence of
u ∈ P SH(�) such that

1

A
δ�(z)

a ≤ |u(z)| ≤ Aδ�(z)
b (5.3)

for some positive constants A, a, b, where δ� is the Euclidean distance to the boundary.
For domains with C2 boundary this is guaranteed by a theorem of Diederich and
Fornæss [48], even with a = b. Since Harrington [61] generalized this Diederich–
Fornæss result to pseudoconvex domains with Lipschitz boundary, the conjecture also
holds in this case.

Further regularity of the pluricomplex Green function was established in [56] and
[18] (see also [19]): if � is C2,1-smooth and strongly pseudoconvex then for a fixed
w ∈ � we have G�(·, w) ∈ C1,1(�̄\{w}). This is the highest regularity we can
expect, Bedford and Demailly showed that G�(·, w) does not have to be C2-smooth
up to the boundary even if� is C∞-smooth and strongly pseudoconvex. Lempert [85]
proved that G�(·, w) ∈ C∞(�̄\{w}) if � is C∞-smooth and strongly convex.

The following result from [15] was used in the proof of Proposition 5.1: for any
bounded hyperconvex� in C

n and nonnegative F ∈ C(�̄) there exists unique solution
to the following Dirichlet problem:
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⎧⎪⎨
⎪⎩

u ∈ P SH(�) ∩ C(�̄)

(ddcu)n = F dλ

u = 0 on ∂�

. (5.4)

It is an open problem whether the following interior regularity holds here: does
F ∈ C∞(�̄) imply u ∈ C∞(�) (without any additional assumption on the regularity
of �)? Of course when � is smooth and strongly pseudoconvex then it follows from
the seminal work of Krylov [83] and Caffarelli et al. [37] that u ∈ C∞(�̄). In general
however we cannot expect u to be smooth up to the boundary. The only case so far
of a non-smooth domain where this problem was solved is a polydisk, see [16]. The
main tool was transitivity of the group of holomorphic automorphisms used to show
interior C1,1-regularity, as in the classical result of Bedford and Taylor [1] for a ball.
The corresponding result for the real Monge–Ampère equation in arbitrary bounded
convex domain in R

n holds by the famous interior estimate of Pogorelov [99].
In Sect. 7 we will need the following product property of the pluricomplex Green

function proved by Jarnicki and Pflug [69]:

Theorem 5.2 Assume that � j ⊂ C
n j , j = 1, 2, are pseudoconvex. Then

G�1×�2

((
z1, z2

)
,
(
w1, w2

))
= max

{
G�1

(
z1, w1

)
,G�2

(
z2, w2

)}
. (5.5)

Proof Directly from the definition we have ≥. To show ≤ we may assume that� j are
bounded hyperconvex. Then it is enough to show that for fixedw j ∈ � j the right-hand
side od (5.5), as a function of (z1, z2), is maximal in �1 × �2\{(w1, w2)}. By (5.1)
we have to prove that it solves the homogeneous complex Monge–Ampère equation.
This follows from the following result of Zeriahi [116]:

(ddcu j )
n j = 0 ⇒

(
ddc max

{
u1

(
z1
)
, u2

(
z2
)})n1+n2 = 0

which can be easily deduced from the following formula originally proved in [17]:

Theorem 5.3 Let u, v be locally bounded plurisubharmonic functions defined on an
open subset of C

n and 2 ≤ p ≤ n. Then

(ddc max{u, v})p = ddc max{u, v} ∧
p−1∑
k=0

(ddcu)k ∧ (ddcv)p−1−k

−
p−1∑
k=1

(ddcu)k ∧ (ddcv)p−k .

Proof By approximation we may assume that u, v are smooth. A simple inductive
argument reduces the proof to the case p = 2. Set w := max{u, v} and, for ε > 0,
wε := max{u+ε, v}. In an open set {u+ε > v} we havewε−u = ε, whereasw−v = 0
in {u < v}. It follows that for every ε > 0 one has ddc(wε − u) ∧ ddc(w − v) = 0
and taking the limit we conclude that ddc(w − u) ∧ ddc(w − v) = 0. 
�
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Edigarian [53] showed Theorem 5.2 without assuming pseudoconvexity. His proof
however is much more complicated, it uses Poletsky’s theory of analytic disks [100].

6 Bergman completeness

For a domain � in C
n we set A2(�) := O(�) ∩ L2(�). It is a closed subspace of

L2(�) and thus a Hilbert space. It is conjectured that when � is pseudoconvex then
either A2(�) = {0} or A2(�) is infinitely dimensional. Wiegerinck [114] showed this
for n = 1 and found non-pseudoconvex � with A2(�) of arbitrary dimension.

For w ∈ � the functional

A2(�) � f �−→ f (w) ∈ C

is bounded and thus f (w) = 〈 f, Kw〉 for some Kw ∈ A2(�) and all f . The Bergman
kernel is characterized by the reproducing formula

f (w) =
∫
�

f (z)K�(z, w)dλ(z), f ∈ A2(�), w ∈ �.

Applying this for f = K�(·, z) we see that K� is antisymmetric:

K�(w, z) = K�(z, w)

and

K�(z, z) = ||K�(·, z)||2 = sup{| f (z)|2 : f ∈ A2(�), || f || ≤ 1}, (6.1)

where || · || is the L2-norm in �. By Hartogs’ theorem on separate holomorphic
functions K� is smooth on � × �. If {σ j } is an orthonormal system in A2(�)

then

K�(z, w) =
∑

j

σ j (z)σ j (w)

and on the diagonal

K�(z, z) =
∑

j

|σ j (z)|2. (6.2)

For other basic properties of K� we refer to [70].
For a big class of domains, e.g. bounded ones, on the diagonal we have K� > 0

and thus log K�(z, z) is a smooth plurisubharmonic function in�. If it is also strongly
plurisubharmonic then we say that� admits the Bergman metric and the Kähler metric
defined by the potential log K�(z, z) is called the Bergman metric of�. One can show
that the Levi form is given by the following extremal formula
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n∑
p,q=1

∂2(log K�(z, z))

∂z p∂ z̄q
X p X̄q

= 1

K�(z, z)
sup

{
|DX f (z)|2 : f ∈ A2(�), f (z) = 0, || f || ≤ 1

}
,

where DX = ∑
p X p∂/∂z p, and it follows easily that for example all bounded domains

admit the Bergman metric.
If � is complete with respect to the geodesic distance defined by the Bergman

metric then we say that � is Bergman complete. The main tool in studying Bergman
completeness is the following embedding of Kobayashi [80]:

κ : � � z �−→ [K�(·, z)] ∈ P(A2(�)).

One can easily show that if � admits the Bergman metric then κ is an immersion
and if � is bounded then it is an embedding. The main point is that the pull-back of
the Fubini–Study metric on the (infinitely dimensional) projective space P(A2(�))

by κ is precisely the Bergman metric of �. This is sometimes called Kobayashi’s
alternative definition of the Bergman metric. An immediate consequence of this is
that κ is distance decreasing which means that

dist B
�(z, w) ≥ arccos

|K�(z, w)|√
K�(z, z)K�(w,w)

, (6.3)

where dist B
� is the distance defined by the Bergman metric. In particular,

K�(z, w) = 0 ⇒ dist B
�(z, w) ≥ π

2

and Dinew [50] showed that π/2 is an optimal constant here.
We have the following criterion of Kobayashi [80] for Bergman completeness:

Theorem 6.1 Assume that � admits the Bergman metric and is such that for any
sequence z j ∈ � without accumulation point in � we have

lim
j→∞

| f (z j )|2
K�(z j , z j )

= 0, f ∈ A2(�). (6.4)

Then � is Bergman complete.

Proof Assume that z j ∈ � is a Cauchy sequence with respect to dist B
�. If it has

an accumulation point in � then it has a limit, since locally the Bergman metric is
equivalent to the Euclidean metric. We may thus assume that it has no accumulation
point in �. Since κ is distance decreasing, it follows that κ(z j ) is a Cauchy sequence
in P(A2(�)) and thus has a limit there, say [ f ] for some f ∈ A2(�), f �≡ 0. This
means that there exist a j ∈ C such that

a j K�(·, z j ) → f.
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This gives |a j |
√

K�(z j , z j ) → || f || and |a j | | f (z j )| → || f ||2 which imply that

| f (z j )|2
K�(z j , z j )

→ || f ||2,

a contradiction. 
�
We say that a bounded � is Bergman exhaustive if

lim
z→∂�

K�(z, z) = ∞.

Note that bounded domains satisfying (6.4) must be Bergman exhaustive, simply take
f ≡ 1. The Hartogs triangle

{z ∈ C
2 : |z2| < |z1| < 1}

is an example of a domain which is Bergman exhaustive but not Bergman complete.
This can be shown using the fact that the Hartogs triangle is biholomorphic to � ×
�∗. This example also shows that Bergman exhaustiveness is not a biholomorphic
invariant, contrary to Bergman completeness. On the other hand, Chen [39] proved
that for n = 1 Bergman exhaustiveness does imply Bergman completeness.

Zwonek [118] showed that the converse to Theorem 6.1 does not hold: he gave
an example of a bounded domain in C which is Bergman complete but not Bergman
exhaustive. This example was simplified by Jucha [72]: he showed that

� := �∗\
( ∞⋃

k=1

�̄(2−k, rk)

)
,

where rk > 0 are such that �̄(2−k, rk) ∩ �̄(2−l , rl) = ∅ for k �= l, is Bergman
complete if and only if

∞∑
k=1

2k

√− log rk
= ∞

and Bergman exhaustive if and only if

∞∑
k=1

4k

− log rk
= ∞.

Therefore, if for example rk = e−k24k
then � is Bergman complete but not Bergman

exhaustive.
The proof of Theorem 6.1 really shows something slightly stronger: instead of (6.4)

it is enough to assume that

lim
j→∞

| f (z j )|2
K�(z j , z j )

< || f ||2, f ∈ A2(�), f �≡ 0.
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It is not known if this condition is equivalent to Bergman completeness or not. Another
open problem is whether Bergman exhaustiveness is a biholomorphically invariant
notion for n = 1. In view of Chen’s result, an example showing that it is not would be
another one showing that (6.4) is not equivalent to Bergman completeness.

It turns out that pluripotential theory gives a lot of examples of Bergman complete
domains. The main result is due to Chen [38] in dimension one and independently to
Herbort [62] and Pflug et al. [30] in arbitrary dimension:

Theorem 6.2 Bounded hyperconvex domains are Bergman complete.

We will prove this using the following estimate of Herbort [62]:

Theorem 6.3 Assume that� is pseudoconvex. Then for every f ∈ A2(�) andw ∈ �
one has

| f (w)|2
K�(w,w)

≤ cn

∫
{G�(·,w)<−1}

| f |2dλ. (6.5)

Proof Approximating� from inside we may assume that it is bounded and hypercon-
vex. We will use Theorem 2.2 with

ϕ = 2nG, ψ = − log(−G),

and

α = ∂̄( f χ ◦ G) = f χ ′ ◦ G ∂̄G,

where G = G�(·, w) and χ ∈ C∞((−∞, 0)) is such that χ(t) = 0 for t ≥ −1/2 and
χ(t) = −1 for t ≤ −2. We have

i ᾱ ∧ α ≤ | f |2G2(χ ′ ◦ G)2i∂∂̄ψ

and thus by Theorem 2.2 there exists u ∈ L2
loc(�) (in fact it has to be continuous)

such that ∂̄u = α and

∫
�

|u|2dλ ≤
∫
�

|u|2e−ϕdλ ≤ C
∫
�

| f |2G2(χ ′ ◦ G)2e−2nGdλ. (6.6)

Since e−ϕ is not locally integrable near w, it follows that for F := f χ ◦ G − u is
holomorphic in �, F(w) = f (w) and

∫
�

|F |2 ≤ cn

∫
{G<−1}

| f |2dλ.


�
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Proof of Theorem 6.2 By Proposition 5.1

lim
w→∂�

λ({G�(·, w) < −1}) = 0

and thus by Theorem 6.3

lim
w→∂�

| f (w)|2
K�(w,w)

= 0.

The result now follows from Kobayashi’s criterion Theorem 6.1. 
�
Taking f ≡ 1 in Herbort’s estimate (6.5) we get

K�(w,w) ≥ 1

cnλ({G�(·, w) < −1}) . (6.7)

The proof of Proposition 5.1 now gives for bounded hyperconvex domains

K�(w,w) ≥ 1

C(n, λ(�))|u(w)| ,

where u is the solution to (5.4) with F ≡ 1. This is an interesting lower bound for the
Bergman kernel in terms of a solution to the complex Monge–Ampère equation and
is in fact a quantitative version of the following result of Ohsawa [96]:

Theorem 6.4 Bounded hyperconvex domains are Bergman exhaustive.

It turns out that getting optimal constant in Herbort’s estimate (6.5) and especially
in (6.7) can be extremely useful. Herbort originally obtained the constant

cn = 1 + 4e4n+3+R2
,

so it depended in addition on the diameter R of�. If we look at the proof of Theorem
6.3 closer and chooseχ a bit more carefully then we can improve the constant obtained
there considerably. Take χ ∈ C0,1((−∞, 0)) such that χ(t) = 0 for t ≥ −1 and for
t < −1 choose it in such a way that tχ ′(t)e−nt = −1, that is

χ(t) =
{

0 t ≥ −1∫ −t
1

ds
sens t < −1

. (6.8)

Then F(w) = χ(−∞) f (w) and as in [23] we will get

cn =
(

1 + C

Ei (n)

)2

, (6.9)
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where

Ei (a) =
∫ ∞

a

ds

ses

and C is the constant from Theorem 2.2 (we know that C = 4 is optimal there). We
will determine the optimal cn in Sect. 7.

Bergman completeness of a bounded domain is equivalent to the fact that
dist B

�(z, w) → ∞ as z → ∂� andw is fixed. Theorem 6.2 does not give any quantita-
tive version of this, even in terms of pluripotential theory. Diederich and Ohsawa [49]
showed a lower bound for the Bergman distance for bounded pseudoconvex domains
with C2 boundary implying in particular completeness, this was later improved in
[23]:

dist B
�(z, w) ≥ − log δ�(z)

C log(− log δ�(z))
, (6.10)

where C is a positive constant depending only on� andw. The proof used the following
estimate from [23] for the Bergman distance in terms of pluripotential theory:

Theorem 6.5 Let � be pseudoconvex in C
n and assume that z, w ∈ � are such that

{G�(·, z) < −1} ∩ {G�(·, w) < −1} = ∅. (6.11)

Then

.
|K�(z, w)|√

K�(z, z)K�(w,w)
≤ 1√

1 + a2
n

, (6.12)

where

an =
(

1 + 2en

Ei (n)

)−1

,

and

dist B
�(z, w) ≥ arctan an . (6.13)

Proof First note that (6.13) follows directly from (6.12) and (6.3). The proof of (6.12)
will be similar to that of Theorem 6.3. We may assume that � is bounded and hyper-
convex. We will use Theorem 2.2 with

ϕ = 2n(Gz + Gw), ψ = − log(−Gz),

where Gz = G�(·, z). Set

f := K�(·, w)√
K�(w,w)

∈ A2(�),
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so that || f || = 1, and

α := ∂̄( f χ ◦ Gz) = f χ ′ ◦ Gz ∂̄Gz,

where χ is given by (6.8). We can find continuous u in � solving ∂̄u = α and such
that

∫
�

|u|2dλ ≤
∫
�

|u|2e−ϕdλ ≤ 4
∫
�

| f |2G2
z (χ

′ ◦ Gz)
2e−2n(Gz+Gw)dλ

≤ 4e2n
∫

{Gz<−1}
| f |2dλ,

where the last inequality follows from (6.11). We thus get ||u|| ≤ 2en (because
|| f || = 1) and, since e−ϕ is not locally integrable near both z and w, that u(z) =
u(w) = 0. The function F = f χ ◦ Gz − u is thus holomorphic and such that F(z) =
Ei (n) f (z), F(w) = 0 (the latter by (6.11) again). We also have ||F || ≤ Ei (n)+ 2en .

By the definition of f

〈F, f 〉 = F(w)√
K�(w,w)

= 0.

Therefore by (6.2)

K�(z, z) ≥ | f (z)|2 + |F(z)|2
||F ||2 ≥ | f (z)|2

(
1 + a2

n

)
,

and (6.12) follows. 
�
Theorem 6.5 reduced the proof of (6.10) in [23] to right estimates for the pluri-

complex Green function, as in [63]. Since the only information really needed is (5.3)
with a = b, by [61] the estimate (6.10) also holds for pseudoconvex domains with
Lipschitz boundary. It is an open problem whether (6.10) can be improved to

dist B
�(z, w) ≥ 1

C
(− log δ�(z)),

which would be optimal. This estimate is known to hold for smooth strongly pseudo-
convex domains and also for convex ones (without any regularity assumption, see
[23]).

Lu Qi-Keng [87] showed that if the Bergman metric has constant sectional curvature
then it is biholmorphic to a ball. A conjecture of Cheng asserts that this assumption can
be weakened for smooth strongly pseudoconvex domains. It states that such a domain
is biholomorphic to a ball if and only if its Bergman metric is Kähler–Einstein, that
is its Ricci curvature is proportional to the metric. For n = 1 it follows from [87] and
for n = 2 it was shown by Nemirovskii and Shafikov [94]. It remains open in higher
dimensions.
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7 Suita conjecture

Let D be a domain in C admitting the Green function which means exactly that the
complement of D is not polar. For z ∈ D set

cD(z) := exp lim
ζ→z

(G D(ζ, z)− log |ζ − z|).

It is in fact the logarithmic capacity of the complement of D with respect to z and the
function under the exponent is called the Robin function for G D . The function cD is
not biholomorphically invariant but one can easily check that the metric cD|dz| does
not depend on a local holomorphic change of variables and thus is an invariant metric
even for Riemann surfaces. It is called the Suita metric of D. Its curvature is given by

CurvcD |dz| = −∂
2(log cD)/∂z∂ z̄

c2
D

.

Suita [110] conjectured that

CurvcD |dz| ≤ −1. (7.1)

It is easy to see that we have equality for a disk and thus for simply connected domains.
Using elliptic functions Suita showed that one has strict inequality in (7.1) if D is an
annulus, and thus also any regular doubly connected domain. In fact, for D = {e−5 <

|z| < 1} the graph of CurvcD |dz| as a function of log |z| looks as follows:1

5 4 3 2 1

7

6

5

4

3

2

1

By approximation it is enough to verify (7.1) for bounded smooth D and then
one can show that we have equality in (7.1) on the boundary. Therefore the Suita
conjecture essentially asks whether the curvature of the Suita metric satisfies the
maximum principle. This is in fact a rather rare situation for invariant metrics in

1 Figures were obtained using Mathematica.
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complex analysis, for example it is not satisfied for the Bergman metric. For the same
annulus as before we will then have the following picture:

5 4 3 2 1

6

5

4

3

2

1

See [51] and [119] for specific results on the curvature of the Bergman metric on an
annulus.

Surprisingly, it turned out that only the methods of several complex variables have
given any real progress in this one-dimensional problem. It was the breakthrough of
Ohsawa [97] who noticed that it is really an extension problem closely related to the
Ohsawa–Takegoshi theorem. It was proved already by Suita [110] that

∂2(log cD(z))
∂z∂ z̄ = πK D(z, z),

this in fact follows easily from the Schiffer formula

K D(z, w) = 2
π
∂2G D(z,w)
∂z∂w̄ , z �= w,

and therefore (7.1) is equivalent to

cD(z)
2 ≤ πK D(z, z). (7.2)

But this is in turn equivalent to the following extension problem: for a given z ∈ D
find f ∈ O(D) such that f (z) = 1 and

∫
D

| f (z)|2dλ ≤ π

cD(z)2
.

Ohsawa [97], using the same methods as in the original proof of the Ohsawa–Takegoshi
theorem, proved the estimate

cD(z)
2 ≤ C K D(z, z).

for some large absolute constant C . It was later improved in [25] and [59].
The optimal constant was eventually obtained in [27] where the following version

of the Ohsawa–Takegoshi theorem also with optimal constant was proved:
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Theorem 7.1 Assume that D is a domain in C containing the origin. Let� ⊂ C
n−1 ×

D be pseudoconvex, ϕ ∈ P SH(�), and set �′ := � ∩ {zn = 0}. Then for any
f ∈ O(�′) there exists F ∈ O(�) such that F = f on �′ and

∫
�

|F |2e−ϕdλ ≤ π

cD(0)2

∫
�′

| f |2e−ϕdλ′.

For n = 1 we obtain the Suita conjecture (7.2).
The proof of Theorem 7.1 was similar to that of Theorem 3.2 but Theorem 2.4 was

used instead of Theorem 2.3 and the weights were chosen more carefully. Theorem
2.4 was used in [27] with weights of the form

ϕ̃ = ϕ + 2G + η(−2G), ψ = γ (−2G),

where G = G D(·, 0). It was rather straightforward, although technical, how to define
η(t) and γ (t) for t ≥ −2 log ε (that is ϕ̃ and ψ near {zn = 0}). The main problem was
to construct h, g on (0,∞) behaving like − log t near ∞ and such that

(
1 − (g′)2

h′′

)
e2g−h+t ≥ 1. (7.3)

Eventually it turned out that solutions can be written explicitly:

h(t) := − log(t + e−t − 1)

g(t) := − log(t + e−t − 1)+ log(1 − e−t )

and we even have equality in (7.3). In fact, when a similar method was used earlier in
[26] but with Theorem 2.3 instead of 2.4, it lead to an ODE with only one unknown:

(
1 − (g′)2

g′′

)
eg+t ≥ 1

and the best constant one can get this way is 1.95388..., the same as the one obtained
earlier in [59].

After [27], Guan and Zhou [57] proved various generalizations of Theorem 7.1 but
used essentially the same ODE with two unknowns as (7.3) and got essentially the
same solutions. They also characterized precisely the case when there is equality in
(7.2) answering a more precise question posed by Suita [110]:

Theorem 7.2 Let M be a Riemann surface admitting the Green function (which is
equivalent to the fact that there exists a bounded nonconstant subharmonic function on
M). Then (7.2) holds and if we have equality for some z ∈ M then M is biholomorphic
to �\F where F is a closed polar subset of �.

Another approach to the Suita conjecture was presented in [28]. The idea was to
obtain optimal constants in (6.7) for arbitrary sublevel sets. It turned out that the
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constant obtained already can be improved to the optimal one quite easily using the
tensor power trick. The following general lower bound for the Bergman kernel on the
diagonal was obtained:

Theorem 7.3 Let � be pseudoconvex, w ∈ � and t ≤ 0. Then

K�(w,w) ≥ 1

e−2ntλ({G�(·, w) < t}) . (7.4)

Proof Repeating the argument of the proof of Theorem 6.3 with the constant given
by (6.9) for f ≡ 1 and arbitrary t we will obtain

K�(w,w) ≥ c(n, t)

λ({G�(·, w) < t}) , (7.5)

where

c(n, t) =
(

1 + C

Ei (nt)

)2

and C is the constant from Theorem 2.2. We now use the tensor power trick: for a
positive integer m take �̃ = �m ⊂ C

nm and w̃ = (w, . . . , w). Then by the product
properties for the Bergman kernel (see e.g. [70]) and for the pluricomplex Green
function, Theorem 5.2, we have

K�̃(w̃, w̃) = (K�(w))
m, {G�̃(·, w̃) < t} = {G�(·, w) < t}m,

and thus by (7.5)

K�(w,w) ≥ c(nm, t)1/m

λ({G�(·, w) < t}) .

We can however easily check that

lim
m→∞ c(nm, t)1/m = e2nt

and the theorem follows. 
�
Of course the same method gives the optimal version of the Herbort estimate (6.5)

for arbitrary sublevel set:

| f (w)|2
K�(w,w)

≤ e−2nt
∫

{G�(·,w)<t}
| f |2dλ.

It is now the most interesting what happens with the right-hand side of (7.4) as
t → −∞. For n = 1 we can write

G�(z, w) = log |z − w| + ϕ(z),
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where ϕ is harmonic in �. Denoting by Mt and mt the supremum and infimum of ϕ
over {G�(·, w) < t}, respectively, we see that

�(w, et−Mt ) ⊂ {G�(·, w) < t} ⊂ �(w, et−mt )

and therefore

lim
t→−∞ e−2tλ({G�(·, w) < t}) = πe−2ϕ(w) = π

c�(w)2
.

We have thus obtained another proof of the Suita conjecture (7.2). Unlike the previous
one which could have been presented entirely in dimension one, this one makes direct
use of arbitrarily many complex variables to prove a one-dimensional result—the
tensor power trick is crucial in this approach. Observe that this trick does not seem to
work in another bound for the Bergman kernel (6.12)—there the constant

(
1√

1 + a2
nm

)1/m

increases to 1 as m increases to ∞, so in fact we get worse estimate than the original
one.

In higher dimensions we have the following recent result from [31]:

Theorem 7.4 Let � be bounded and hyperconvex. Then

lim
t→−∞ e−2ntλ({G�(·, w) < t}) = λ(I A

�(w)),

where

I A
�(w) =

{
X ∈ C

n : lim
ζ→0

(G�(w + ζ X, w)− log |ζ |) < 0

}

is the Azukawa indicatrix of � at w.

Proof We may assume that w = 0. Write G := G�,0, It := e−t {G < t}. By Zwonek
[117] the function

A(X) = lim
ζ→0

(G(ζ X)− log |ζ |)

is continuous on C
n and lim is equal to lim. Therefore

A(X) = lim
t→−∞(G(e

t X)− t)

and by the Lebesgue bounded convergence theorem

lim
t→−∞ λ(It ) = λ({A < 0})

(if � is contained in B(0, R) then so is It ). 
�
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Combining this with Theorem 7.3 by approximation we thus obtain the following
multidimensional version of the Suita conjecture:

Theorem 7.5 For a pseudoconvex � and w ∈ � one has

K�(w,w) ≥ 1

λ(I A
�(w))

. 
�

It should be mentioned that recently Lempert [86] gave another proof of Theorem
7.3. He observed that considering the following pseudoconvex domain in C

n+1

{(z, ζ ) ∈ � : G�(z, w)+ Re ζ < 0}

and using the result on log-plurisubharmoncity of sections of the Bergman kernel
due to Maitani and Yamaguchi [89] for n = 1 and Berndtsson [6] for arbitrary n,
one can get that the function log K{G�(·,w)<t}(w,w) is convex in t . For r > 0 with
B(w, r) ⊂ � we have

log K{G�(·,w)<t}(w,w) ≤ − log λ(B(w, ret )),

and therefore the function

2nt + log K{G�(·,w)<t}(w,w)

is convex and bounded from above on (−∞, 0], hence non-decreasing. We get

K�(w,w) ≥ e2nt K{G�(·,w)<t}(w,w) ≥ e2nt

λ({G�(·, w) < t}) ,

since we can always take f ≡ 1 in (6.1). This gives another proof of the one-
dimensional Suita conjecture, this time making crucial use of two complex variables.

Berndtsson and Lempert [12] very recently improved this method to obtain the
Ohsawa–Takegoshi theorem with optimal constant as well. They use a stronger tool
than log-plurisubharmoncity of sections of the Bergman kernel, namely Berndtsson’s
positivity of direct image bundles [8].

8 Suita conjecture for convex domains in C
n

Theorems 7.3 and 7.5 seem to be especially interesting when � is convex. Then it
is known, see [70], that the Lempert theory [85] implies that the Azukawa indicatrix
I A
�(w) is equal to the Kobayashi indicatrix

I K
� (w) = {ϕ′(0) : ϕ ∈ O(�,�), ϕ(0) = w}.

We thus have the following estimate from [28]:
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Theorem 8.1 For w ∈ � ⊂ C
n, where � is a convex domain, we have

K�(w,w) ≥ 1

λ(I K
� (w))

.


�
In this case, it turns out that a similar upper bound for the Bergman kernel also

holds. We have the following result from [31]:

Theorem 8.2 Under the assumptions of Theorem 8.1 we have

K�(w,w) ≤ 4n

λ(I K
� (w))

.

If � is in addition symmetric with respect to w than the constant 4 above can be
replaced with 16/π2 = 1.621 . . .

Proof Assume that w = 0 and let I be the interior of I K
� (0). We will show that

I ⊂ 2�, then since I is balanced (that is z ∈ I implies ζ z ∈ I for ζ ∈ �̄) we will
have

K�(0, 0) ≤ K I/2(0, 0) = 1

λ(I/2)
= 4n

λ(I )
.

The proof that I ⊂ 2� will be similar to the proof of Proposition 1 in [95]. For
X = ϕ′(0) ∈ Ī by L denote the complex line generated by X . Let a be the point from
L ∩ ∂� with the smallest distance to the origin, write it as a = ζ0 X . We want to show
that |X | ≤ 2|a|, that is that |ζ0| ≥ 1/2.

Let H be the complex supporting hyperplane in C
n to� at a, that is H ∩� = ∅ and

a ∈ H . Without loss of generality we may assume that H = {zn = an}. Let D be a
half-plane in C containing the image of the projection of� to the nth variable and such
that an ∈ ∂D. Then ϕn , the nth component of ϕ, belongs to O(�, D) and ϕn(0) = 0.
By the Schwarz lemma |Xn| = |ϕ′

n(0)| ≤ 2|an| which implies that |ζ0| ≥ 1/2.
If � is in addition symmetric then as D we may take a strip instead of a half-plane

and then |ϕ′
n(0)| ≤ (4/π)|an|. 
�

We have thus seen that for convex � the biholomorphically invariant function

F�(w) := (K�(w,w)λ(I
K
� (w)))

1/n

satisfies

1 ≤ F� ≤ 4.

The lower bound was obtained using the ∂̄-equation whereas the proof of the upper
bound was relatively elementary. The lower bound is optimal—for example if � is
balanced with respect to w then we have equality—and it would be interesting to find
an optimal upper bound. It is in fact not so trivial to prove that we may at all have
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F�(w) > 1. This was done in [31] and [32] where F� was computed for certain
complex convex ellipsoids and some w. Here are two results:

Theorem 8.3 For� = {z ∈ C
n : |z1|+· · ·+|zn| < 1} andw = (b, 0, . . . , 0), where

0 ≤ b < 1, one has

K�(w)λ(I
K
� (w)) = 1 + (1 − b)2n (1 + b)2n − (1 − b)2n − 4nb

4nb(1 + b)2n

= 1 + (1 − b)2n

(1 + b)2n

n−1∑
j=1

1

2 j + 1

(
2n − 1

2 j

)
b2 j .

The proof uses the formula for the Bergman kernel for this ellipsoid

K�((b, 0, . . . , 0)) = 2n − 1

4πωb
((1 − b)−2n − (1 + b)−2n),

whereω = λ({z ∈ C
n−1 : |z1|+· · ·+|zn−1| < 1}), obtained from the deflation method

of Boas–Fu–Straube [33]. The main part of the proof was to compute λ(I K
� (w)). For

that the formula of Jarnicki–Pflug–Zeinstra [71] for geodesics in convex complex
ellipsoids (which is based on Lempert’s theory [85]) was used. Here are the resulting
graphs of F�(b, 0, . . . , 0) for n = 2, 3, . . . , 6:
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Theorem 8.4 For m ≥ 1/2 set �m := {|z1|2m + |z2|2 < 1} and w = (b, 0) where
0 ≤ b < 1. Then

λ(I�m ((b, 0))) = π2
[

− m − 1

2m(3m − 2)(3m − 1)
b6m+2 − 3(m − 1)

2m(m − 2)(m + 1)
b2m+2

+ m

2(m − 2)(3m − 2)
b6 + 3m

3m − 1
b4− 4m − 1

2m
b2+ m

m + 1

]
.

Some computations leading to this formula were done with the help of Mathemat-
ica. The Kobayashi function for this ellipsoid was computed implicitly by Blank–
Fan–Klein–Krantz–Ma–Pang [13] (explicitly up to solving a real equation which is a
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polynomial one of degree 2m if m is an integer) and this had only sufficed for numer-
ical computations of λ(I K

�m
(w)). It turns out however that just the indicatrix I K

�m
(w)

and its volume can be described with explicit although rather complicated formulas.
Here is the graph of F�m (b, 0) for m = 4, 8, 16, 32, 64 and 128:

0.2 0.4 0.6 0.8 1.0

1.002

1.004

1.006

1.008

1.010

In this particular case all values of F�m (w) are attained for w = (b, 0), 0 < b < 1.
One can compute numerically that

sup
m≥1/2

sup
�m

F�m = 1.010182 . . .

and this is the highest value of F� for convex � in any dimension we have been able
to obtain so far. It seems that the lower bound given by Theorem 8.1 is very accurate.

9 Mahler conjecture and Bourgain–Milman inequality

Let K be a convex symmetric (that is K = −K ) body (that is K is compact and has
non-empty interior) in R

n . Its dual is defined by

K ′ := {y ∈ R
n : x · y ≤ 1 for all x ∈ K },

where · denotes the inner product in R
n . The number

λ(K )λ(K ′)

is called the Mahler volume of K . One can show that it is independent of linear
transformations of R

n and of the choice of the inner product. It is thus an invariant
of the n-dimensional real Banach space whose unit ball is K . Santaló [105] showed
that the Mahler volume is maximized for balls (it was earlier proved by Blaschke in
dimensions 2 and 3) and by Saint–Raymond [104] these are the only maximizers (up
to linear transformations). For a proof of the Blaschke–Santaló inequality using the
∂̄-equation see [41].

Mahler [88] conjectured that the Mahler volume is maximized by cubes. He proved
it in dimension 2 and the problem still remains open in higher dimensions. This,
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together with the Blaschke–Santaló inequality, would mean that the Mahler volume is
biggest for the roundest convex symmetric bodies and smallest for the least round. One
of the difficulties with the Mahler conjecture is that, if true, cubes cannot be the only
minimizers, even up to linear transformations. The other candidates are the so called
Hansen–Lima bodies [60]: in R these are symmetric closed intervals and in higher
dimensions they are produced by taking either products of lower dimensional Hansen–
Lima bodies or a dual. This way we do not get anything new in R

2, since the dual
of [−1, 1]2 is the linearly equivalent rhombus {|x1| + |x2| ≤ 1}. However, already in
dimension 3 the dual of the unit cube [−1, 1]3 is the octahedron {|x1|+|x2|+|x3| < 1}
and they are not linearly equivalent. These two are the only Hansen–Lima bodies in R

3

and there are more in higher dimensions. It is conjectured that Hansen–Lima bodies
are the only minimizers of the Mahler volume (up to linear transformations).

An important lower bound for the Mahler volume is the Bourgain–Milman inequal-
ity [34]:

Theorem 9.1 There exists an absolute constant c > 0 such that for a symmetric
convex body K in R

n one has

λ(K )λ(K ′) ≥ cn 4n

n! . (9.1)

Since the Mahler volume of a cube in R
n is equal to 4n/n!, the Mahler conjecture

is equivalent to (9.1) with c = 1. The original proof from [34] was qualitative, it did
not give any particular value of c. So far the best constant in (9.1) was obtained by
Kuperberg [84] who proved it with c = π/4. Recently Nazarov [93] gave a different
proof of the Bourgain–Milman inequality and although he obtained a worse constant
than Kuperberg, namely c = (π/4)3, his proof was very interesting from our point of
view because he used several complex variables and Hörmander’s estimate. In [28] it
was shown that Theorem 8.1 can be used in Nazarov’s approach instead but of course
Hörmander’s estimate is hidden there.

Before we present Nazarov’s proof of Theorem 9.1, let us look at his equivalent
formulation of the Mahler conjecture as a problem in several complex variables. For
u ∈ L2(K ′) and its Fourier transform û ∈ O(Cn) by the Schwarz inequality and the
Plancherel formula we have

|̂u(0)|2 =
∣∣∣∣
∫

K ′
u dλ

∣∣∣∣
2

≤ λ(K ′)||u||2L2(K ′) = (2π)−nλ(K ′)||̂u||2L2(Rn)

and the equality holds if u is the characteristic function of K ′. Therefore

λ(K ′) = (2π)n sup
f ∈P

| f (0)|2
|| f ||2

L2(Rn)

, (9.2)

where

P = {̂u : u ∈ L2(K ′)}
is a family of entire holomorphic functions. In fact, using the Paley–Wiener theorem
one can completely characterize the class P (see e.g. [103] for details): it consists of
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those f ∈ O(Cn) that are of exponential growth (that is | f (z)| ≤ CeC|z| for some
constant C) and such that

| f (iy)| ≤ CeqK (y), y ∈ R
n,

where qK is the Minkowski function for K (that is the norm in R
n with unit ball K ).

The usefulness of the formula for the volume of the dual (9.2) is that K ′ itself does
not appear on the right-hand side. Therefore the Mahler conjecture is equivalent to
finding f ∈ P such that f (0) = 1 and

∫
Rn

| f (x)|2dλ(x) ≤ n!πn

2n
λ(K ).

Nazarov, instead of constructing a holomorphic function on the entire C
n , consid-

ered the convex tube in C
n defined by K:

TK := int K + iRn .

He proved the following bounds for the Bergman kernel in TK:

KTK (0, 0) ≤ n!
πn

λ(K ′)
λ(K )

(9.3)

and

KTK (0, 0) ≥
(π

4

)2n 1

(λ(K ))2
. (9.4)

Combining them we get (9.1) with c = (π/4)3. Note that (9.4) follows immediately
from Theorem 8.1 and the following:

Proposition 9.2 For a convex symmetric body K in R
n we have

I K
TK
(0) ⊂ 4

π
(K + i K ).

Proof Let � be a conformal mapping from the strip (−1, 1) + iR to � such that
�(0) = 0, then |�′(0)| = π/4. Fix y ∈ K ′, then

F(z) := �(z · y) ∈ O(TK ,�)

satisfies F(0) = 0. For X = ϕ′(0) ∈ I K
TK
(0) by the Schwarz lemma we have |(F ◦

ϕ)′(0)| ≤ 1 and therefore |X · y| ≤ 4/π . This means that

I K
TK
(0) ⊂ 4

π
{z ∈ C

n : |z · y| ≤ 1 for all y ∈ K ′} ⊂ 4

π
(K ′′ + i K ′′)

and the proposition follows since K ′′ = K . 
�
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For smooth strongly convex K Lempert’s theory [85] can be used to obtain more
precise description of I K

TK
(0) in terms of the Gauss mapping of ∂K , see [28].

As shown in [93] the upper bound (9.3) follows easily from the formula for the
Bergman kernel in convex tube domains due to Rothaus [102] (see also [68]):

KTK (z, w) = 1

(2π)n

∫
Rn

ei(z−w̄)·y

JK (y)
dλ(y),

where

JK (y) =
∫

K
e−2x ·ydλ(x).

Fix y ∈ R
n and x̃ ∈ K . Then, since K is symmetric,

JK (y) ≥ 2−n
∫

K
e−(x+x̃)·ydλ(x) ≥ 2−nλ(K )e−x̃ ·y .

Minimizing the right-hand side over x̃ we get

JK (y) ≥ 2−neqK ′ (y).

Since for any convex body K one has

∫
Rn

e−qK dλ =
∫

Rn

∫ ∞

qK (y)
e−t dt dλ(y) =

∫ ∞

0
e−tλ({qK < t})dt = n!λ(K ),

the upper bound (9.3) follows.

10 Isoperimetric inequalities and symmetrization

One of the interesting open problems is whether in the lower bound for the Bergman
kernel (7.4) the right-hand side is monotone in t . This would mean in particular that
the best bound is obtained when t → −∞, that is that Theorem 7.5 is the optimal
version of this estimate. We start with the following result from [31] showing that this
is indeed the case for n = 1:

Theorem 10.1 Assume that w ∈ � ⊂ C. Then the function

(−∞, 0] � t �−→ e−2tλ({G�(·, w) < t})

is non-decreasing.

Proof With the notation G := G�(·, w) set

f (t) := log λ({G < t})− 2t.
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It is enough to show that if t is a regular value of G then f ′(t) ≥ 0. By the co-area
formula

λ({G < t}) =
∫ t

−∞

∫
{G=s}

dσ

|∇G| ds

and therefore by the Schwarz inequality

d

dt
λ({G < t}) =

∫
{G=t}

dσ

|∇G| ≥ σ({G = t})2∫
{G=t}

|∇G|dσ
.

We have
∫

{G=t}
|∇G|dσ =

∫
{G=t}

∂G

∂n
dσ =

∫
{G<t}

�G = 2π

and by the isoperimetric inequality

σ({G = t})2 ≥ 4πλ({G < t}).

It follows that

f ′(t) =

∫
{G=t}

dσ

|∇G|
λ({G < t}) − 2 ≥ 0.


�
Note that the proof also shows that the problem whether for pseudoconvex� ⊂ C

n

the function

(−∞, 0] � t �−→ e−2ntλ({G�(·, w) < t}) (10.1)

is non-decreasing is equivalent to the following “pluripolar isoperimetric inequality”:
if � is bounded, smooth and strongly pseudoconvex in C

n then for w ∈ � one has

∫
∂�

dσ

|∇G�(·, w)| ≥ 2λ(�).

Similarly as in Lempert’s proof of Theorem 7.3, the monotonicity of (10.1) would
follow if we knew that the function

(−∞, 0] � t �−→ log λ({G�(·, w) < t})

was convex. This was conjectured in [31] but Fornæss [55] found a counterexample
to that already for n = 1.
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The method of proof of Theorem 10.1 was in fact inspired by the proof of a sym-
metrization result for the Laplacian due to Talenti [111]. For a measurable subset A
in R

n its Schwarz symmetrization (or rearrangement) A∗ is the ball centered at the
origin such that λ(A∗) = λ(A). For a nonnegative measurable function f defined on
a measurable subset A of R

n its Schwarz symmetrization f ∗ is the radially symmetric
(that is f ∗(x) depends only on |x |) function defined on A∗ which is non-increasing in
radius and such that λ({ f ∗ > t}) = λ({ f > t}) for every real t . If f is nonpositive
than we set f ∗ := −(− f )∗ or equivalently require that f ∗ is non-decreasing in radius
and the volumes of sublevel (instead of superlevel) sets are the same. One of the useful
properties of rearrangements is that they preserve the L p-norms, or more generally

∫
�∗
γ (| f ∗|) dλ =

∫
�

γ (| f |) dλ

for any increasing γ and f either nonpositive or nonnegative. For an introduction to
rearrangements we refer to [36].

Talenti [111] proved the following:

Theorem 10.2 Let � be a bounded regular domain in R
n and let u be a (possibly

weak) solution to the following Dirichlet problem

{
�u = f ≥ 0 in �

u = 0 on ∂�
.

If v solves

{
�v = f ∗ in �∗

v = 0 on ∂�∗ ,

then v ≤ u∗ in �∗.

Proof By approximation we may assume that u is smooth and strongly subharmonic.
By the Hardy–Littlewood inequality for t ≤ 0 we have

∫
{u<t}

f dλ ≤
∫

{u∗<t}
f ∗dλ =

∫
B(0,r)

�v dλ = nωnrn−1γ ′(r),

where r is such that {u∗ < t} = B(0, r), v(x) = γ (|x |), ωn is the volume of the unit
ball in R

n , and the last equality follows from the fact that

�v = γ ′′ + (n − 1)
γ ′

r
= r1−n d

dr
(rn−1γ ′).
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On the other hand, if t is a regular value of u then by the Schwarz inequality

∫
{u<t}

f dλ =
∫

{u=t}
|∇u|dσ ≥ σ({u = t})2∫

{u=t}
dσ

|∇u|
.

By the isoperimetric inequality

σ({u = t}) ≥ nω1/n
n λ({u < t})1−1/n

and by the co-area formula

∫
{u=t}

dσ

|∇u| = d

dt
λ({u < t}).

Therefore

∫
{u<t}

f dλ ≥ n2ω
2/n
n
λ({u < t})2−2/n

d

dt
λ({u < t})

.

Write u∗(x) = η(|x |). Since {u∗ < t} = B(0, r), we have t = η(r) and λ({u < t}) =
ωnrn . Therefore

∫
{u<t}

f dλ ≥ nωnrn−1η′(r)

and it follows that η′ ≤ γ ′. Since η(R) = γ (R) = 0, where�∗ = B(0, R), we obtain
that η ≥ γ . 
�

For a corresponding symmetrization result for the real Monge–Ampère equation
one has to symmetrize convex u with respect to a different measure. For a bounded
convex domain � in R

n its quermassintegrals Vm(�), m = 0, 1, . . . , n, are defined
by the formula

λ(�+ tB) =
n∑

m=0

(
n

m

)
Vn−m(�)t

m,

where B is the unit ball in R
n and t ≥ 0. Then Vn(�) = λ(�), Vn−1(�) = σ(∂�)/n

(if � is smooth) and V0(�) = ωn . We also have Vm(B(0, r)) = ωnrm . Alexandrov–
Fenchel inequalities state that the expression

(Vm(�)/ωn)
1/m

is non-increasing in m and we have equality at any stage only for balls.
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If� is in addition smooth then Vm(�) can be expressed in terms of an integral over
∂� of a proper curvature of ∂�. If κ1, . . . , κn−1 are the principal curvatures of ∂�
then the mth mean curvature of ∂�, m = 1, . . . , n − 1, is defined by

Hm :=
∑

1≤i1<···<im≤n−1

κi1 . . . κim .

For m = 0 we set H0 ≡ 1. Then H1 is the mean curvature and Hn−1 the Gauss
curvature of ∂�. Then for m = 0, 1, . . . , n − 1 we have

Vm(�) = 1

n
(n−1

m

)
∫
∂�

Hn−m−1dσ.

We refer to [35] and [106] for more details.
By˜we will denote the symmetrization with respect to V1 instead of the Lebesgue

measure λ. Note that by the Alexandrov–Fenchel inequalities we have �∗ ⊂ �̃ and
ũ ≤ u∗ for negative convex u. We have the following result for the real Monge–
Ampère equation due to Talenti [112] in dimension 2 and Tso [113] in the general
case.

Theorem 10.3 Let� be a bounded convex domain. Assume that u is a (possibly weak)
convex solution to the Dirichlet problem

{
det D2u = f ≥ 0 in �

u = 0 on ∂�
.

Extend f ∗ by 0 from �∗ to �̃. If convex v solves

{
det D2v = f ∗ in �̃

v = 0 on ∂�̃
,

then v ≤ ũ in �̃.

Proof By approximation we may assume that u is smooth and strongly convex. Sim-
ilarly as in the proof of Theorem 10.2 we have

∫
{u<t}

f dλ ≤
∫

{u∗<t}
f ∗dλ ≤

∫
{̃u<t}

f ∗dλ =
∫

B(0,r)
det D2v = ωn(γ

′(r))n,

where r is such that {̃u < t} = B(0, r) and v(x) = γ (|x |), so that

det D2v = r1−n(γ ′)n−1γ ′′ = 1

n
r1−n d

dr
((γ ′)n).

123



Cauchy–Riemann meet Monge–Ampère 475

On the other hand for the regular value t of u we have by the Hölder inequality

∫
{u<t}

f dλ =
∫

{u=t}
|∇u|n Hn−1dσ ≥

(∫
{u=t}

Hn−1dσ

)n+1

(∫
{u=t}

Hn−1

|∇u| dσ

)n .

We have
∫

{u=t}
Hn−1dσ = nωn

and by Reilly [101]

∫
{u=t}

Hn−1

|∇u| dσ = 1

n − 1

d

dt

∫
{u=t}

Hn−2dσ = n
d

dt
V1({u < t}). (10.2)

If ũ(x) = η(|x |) then, since {̃u < t} = B(0, r), we have t = η(r). We will obtain

∫
{u<t}

f dλ ≥ ωn(η
′(r))n,

and thus η′ ≤ γ ′. Since η(R) = γ (R) = 0, where �̃ = B(0, R), we get η ≥ γ . 
�
It would be very desirable to prove a similar result for the complex Monge–Ampère

equation. This would in particular immediately imply the following important estimate
of Kołodziej [81] (see also [82]):

Theorem 10.4 Let � be a bounded hyperconvex domain in C
n and let be a solution

to the following Dirichlet problem

⎧⎪⎨
⎪⎩

u ∈ P SH(�) ∩ C(�)

(ddcu)n = f dλ in �

u = 0 on ∂�

.

Then for every p > 1 one has

sup
�

|u| ≤ C || f ||1/n
L p(�),

where C is a constant depending on n, p and the diameter of �.

Similarly as for convex domains, for a smooth pseudoconvex� one can consider the
Levi principal curvatures of the boundary λ1, . . . , λn−1 and define the mth complex
mean curvature Km similarly as Hm , so that K = Kn−1 is the Levi curvature of the
boundary. See [92] and [90] for basic results on complex mean curvatures. If one tries
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to repeat the method of the proof of Theorem 10.3 then two problems appear: first is
the lack of complex counterparts of the Alexandrov–Fenchel inequalities and secondly
it is not clear what the Reilly formula (10.2) should look like in the complex case. It is
also not at all clear what the right symmetrization˜ should be now. One of interesting
conjectures that arise (although not sufficient to prove a symmetrization result for the
complex Monge–Ampère equation), is the following: for a bounded smooth strongly
pseudoconvex � in C

n the following complex isoperimetric inequality holds:

∫
∂�

K dσ ≥ 2n
√
ω2nλ(�)

with equality exactly for balls.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent.
Math. 37, 1–44 (1976)

2. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–41
(1982)

3. Bedford, E., Demailly, J.-P.: Two counterexamples concerning the pluri-complex Green function in
C

n . Indiana Univ. Math. J. 37, 865–867 (1988)
4. Berndtsson, B.: The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–

Fefferman. Ann. Inst. Fourier 46, 1083–1094 (1996)
5. Berndtsson, B.: Weighted estimates for the ∂-equation. In: Complex Analysis and Geometry, Colum-

bus, 1999. Ohio State University Mathematical Research Institute, vol. 9, pp. 43–57. Walter de Gruyter,
Berlin (2001)

6. Berndtsson, B.: Subharmonicity properties of the Bergman kernel and some other functions associated
to pseudoconvex domains. Ann. Inst. Fourier 56, 1633–1662 (2006)

7. Berndtsson, B.: L2-estimates for the d-equation and Witten’s proof of the Morse inequalities. Ann.
Fac. Sci. Toulouse Math. 16, 773–797 (2007)

8. Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. 169,
531–560 (2009)

9. Berndtsson, B.: An introduction to things ∂̄ . In: Analytic and algebraic geometry, IAS/Park City
Mathematics Series, vol 17, pp. 7–76. American Mathematical Society (2010)

10. Berndtsson, B.: The openness conjecture for plurisubharmonic functions. arXiv:1305.5781
11. Berndtsson, B.: Private communication (2014)
12. Berndtsson, B., Lempert, L.: A proof of the Ohsawa–Takegoshi theorem with sharp estimates.

arXiv:1407.4946
13. Blank, B.E., Fan, D.S., Klein, D., Krantz, S.G., Ma, D., Pang, M.-Y.: The Kobayashi metric of a

complex ellipsoid in C
2. Exp. Math. 1, 47–55 (1992)

14. Błocki, Z.: Estimates for the complex Monge–Ampère operator. Bull. Pol. Acad. Sci. Math. 41,
151–157 (1993)

15. Błocki, Z.: The complex Monge–Ampère operator in hyperconvex domains. Ann. Scuola Norm. Sup.
Pisa 23, 721–747 (1996)

16. Błocki, Z.: Interior regularity of the complex Monge–Ampère equation in convex domains. Duke
Math. J. 105, 167–181 (2000)

17. Błocki, Z.: Equilibrium measure of a product subset of C
n . Proc. Am. Math. Soc. 128, 3595–3599

(2000)

123

http://arxiv.org/abs/1305.5781
http://arxiv.org/abs/1407.4946


Cauchy–Riemann meet Monge–Ampère 477

18. Błocki, Z.: The C1,1 regularity of the pluricomplex Green function. Mich. Math. J. 47, 211–215
(2000)

19. Błocki, Z.: Regularity of the pluricomplex Green function with several poles. Indiana Univ. Math. J.
50, 335–351 (2001)

20. Błocki, Z.: The complex Monge–Ampère operator in pluripotential theory. In: Lecture Notes (2002).
http://gamma.im.uj.edu.pl/~blocki

21. Błocki, Z.: A note on the Hörmander, Donnelly–Fefferman, and Berndtsson L2-estimates for the
∂-operator. Ann. Pol. Math. 84, 87–91 (2004)

22. Błocki, Z.: On the definition of the Monge–Ampère operator in C
2. Math. Ann. 328, 415–423 (2004)

23. Błocki, Z.: The Bergman metric and the pluricomplex Green function. Trans. Am. Math. Soc. 357,
2613–2625 (2005)

24. Błocki, Z.: The domain of definition of the complex Monge–Ampère operator. Am. J. Math. 128,
519–530 (2006)

25. Błocki, Z.: Some estimates for the Bergman kernel and metric in terms of logarithmic capacity.
Nagoya Math. J. 185, 143–150 (2007)

26. Błocki, Z.: On the Ohsawa–Takegoshi extension theorem. Univ. Lag. Acta Math. 50, 53–61 (2012)
27. Błocki, Z.: Suita conjecture and the Ohsawa–Takegoshi extension theorem. Invent. Math. 193, 149–

158 (2013)
28. Błocki, Z.: A lower bound for the Bergman kernel and the Bourgain–Milman inequality. In: GAFA

Seminar Notes. Lecture Notes in Mathematics. Springer, New York (2014, to appear)
29. Błocki, Z.: Estimates for ∂̄ and optimal constants. In: Proceedings of the Abel Symposium 2013.

Springer, New York (2014, to appear)
30. Błocki, Z., Pflug, P.: Hyperconvexity and Bergman completeness. Nagoya Math. J. 151, 221–225

(1998)
31. Błocki, Z., Zwonek, W.: Estimates for the Bergman kernel and the multidimensional Suita conjecture.

arXiv:1404.7692
32. Błocki, Z., Zwonek, W.: On the Suita conjecture for some convex ellipsoids in C

2. arXiv:1409.5023
33. Boas, H.P., Fu, S., Straube, E.J.: The Bergman kernel function: explicit formulas and zeroes. Proc.

Am. Math. Soc. 127, 805–811 (1999)
34. Bourgain, J., Milman, V.: New volume ratio properties for convex symmetric bodies in R

n . Invent.
Math. 88, 319–340 (1987)

35. Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities. Springer-Verlag, New York (1988)
36. Burchard, A.: A short course on rearrangement inequalities. In: Lecture Notes (2009). http://www.

math.utoronto.ca/almut/rearrange
37. Caffarelli, L., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for non-linear second order

elliptic equations II: complex Monge–Ampère, and uniformly elliptic equations. Commun. Pure Appl.
Math. 38, 209–252 (1985)

38. Chen, B.Y.: Completeness of the Bergman metric on non-smooth pseudoconvex domains. Ann. Pol.
Math. 71, 241–251 (1999)

39. Chen, B.Y.: A remark on the Bergman completeness. Complex Var. Theory Appl. 42, 11–15 (2000)
40. Chen, B.Y.: A simple proof of the Ohsawa–Takegoshi extension theorem. arXiv:1105.2430
41. Cordero-Erausquin, D.: Santaló’s inequality on C

n by complex interpolation. C. R. Math. Acad. Sci.
Paris 334, 767–772 (2002)

42. Demailly, J.-P.: Estimations L2 pour l’opérateur ∂ d’un fibré vectoriel holomorphe semi-positif au-
dessus d’une variété kahlérienne complète. Ann. Sci. École Norm. Sup. 15, 457–511 (1982)

43. Demailly, J.-P.: Mesures de Monge–Ampère et mesures plurisousharmoniques. Math. Z. 194, 519–
564 (1987)

44. Demailly, J.-P.: Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticité. Acta Math.
159, 153–169 (1987)

45. Demailly, J.-P.: Regularization of closed positive currents and intersection theory. J. Algebraic Geom.
1, 361–409 (1992)

46. Demailly, J.P., Kollár, J.: Semicontinuity of complex singularity exponents and Kähler–Einstein met-
rics on Fano orbifolds. Ann. Sci. École Norm. Sup. 34, 525–556 (2001)

47. Demailly, J.-P., Peternell, T., Schneider, M.: Pseudo-effective line bundles on compact Khler mani-
folds. Int. J. Math. 12, 689–741 (2001)

48. Diederich, K., Fornæss, J.E.: Pseudoconvex domains: bounded plurisubharmonic exhaustion func-
tions. Invent. Math. 39, 129–141 (1977)

123

http://gamma.im.uj.edu.pl/~blocki
http://arxiv.org/abs/1404.7692
http://arxiv.org/abs/1409.5023
http://www.math.utoronto.ca/almut/rearrange
http://www.math.utoronto.ca/almut/rearrange
http://arxiv.org/abs/1105.2430


478 Z. Błocki

49. Diederich, K., Ohsawa, T.: An estimate for the Bergman distance on pseudoconvex domains. Ann.
Math. 141, 181–190 (1995)
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