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Abstract

We sketch a proof of theOhsawa–Takegoshi extension theorem (due to Berndtsson) and then present
some applications of this result: optimal lower bound for the Bergman kernel, relation to the Suita
conjecture, and the Demailly approximation.
� 2008 Elsevier GmbH. All rights reserved.
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0. Introduction

This is an expanded version of the guest lecture, given on May 2, 2007, as a part of the
course Several Complex Variables of professor Ngaiming Mok at the University of Hong
Kong. The aim is to discuss the Ohsawa–Takegoshi extension theorem (in its original form
for domains in Cn) and some applications. We sketch a proof due to Berndtsson (which
is more in the spirit of Hörmander’s book [H], rather than more complicated methods
of abstract Kähler manifolds used in [OT]) and then present some consequences of the
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extension theorem for the Bergman kernel. The Suita conjecture, although formally not a
part of Several Complex Variables, because of its close relation with the extension theorem,
is discussed in detail. Finally, the basic results of the approximation of plurisubharmonic
functions introduced byDemailly are presented. They follow quite easily from the extension
theorem, and since they also imply in a simple way the Siu theorem on analyticity of level
sets of Lelong numbers of a plurisubharmonic function, this again demonstrates the power
of the Ohsawa–Takegoshi theorem.

We limit our interest only to domains in Cn and holomorphic functions. There are many
generalizations of the extension theorem to manifolds, sections of vector bundles, etc., but
this is beyond the scope of this presentation.

One of the main materials used when preparing these notes were Ż. Dinew master thesis
[Di1]. Some of the results presented below can also be found in Ohsawa’s booklet [O5].

1. The Ohsawa–Takegoshi extension theorem

The following result was proved in [OT].

Theorem 1.1. Let� be a bounded pseudoconvex domain inCn and� an arbitrary plurisub-
harmonic function in �. Assume that H is a complex (linear) subspace of Cn and denote
�′ := � ∩ H . Then for every holomorphic function f on �′ there exists a holomorphic F in
� such that F = f on �′ and

∫
�

|F |2e−� d��C�

∫
�′

| f |2e−� d�′,

where C� is a constant depending only on n and on an upper bound for the diameter of �
(d� denotes the Lebesgue measure on Cn and d�′ the Lebesgue measure on H).

Before sketching the proof of this theorem let us briefly discuss the L2-theory of the
�-equation. For a given (0,1)-form � with �� = 0 (which is a necessary condition) one is
interested in solving

�u = � (1.1)

with an L2-estimate. Such solutions are very useful in constructing new holomorphic func-
tions because �v=0 implies that v is holomorphic. Themost classical result in this direction
is due to Hörmander [H] (see also [D1]).

Hörmander’s estimate. Let � be a pseudoconvex domain in Cn and � a C2 strongly
plurisubharmonic function in �. Then for every � ∈ L2

loc,(0,1)(�) with �� = 0 there exists

u ∈ L2
loc(�) solving (1.1) and such that

∫
�

|u|2e−� d��

∫
�

|�|2
i���

e−� d�.
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Here

|�|2
i���

=
∑
j,k

� j k̄� j�k

(where � = ∑
� j dz j and (�k j̄ ) is the inverse of (� j k̄) = (�2�/�z j�zk)) denotes the length

of the form � w.r.t. the Kähler metric i���. In fact, the estimate makes sense also for an
arbitrary plurisubharmonic �: for h with i� ∧ ��hi��� we can find u with

∫
�

|u|2e−� d��

∫
�
he−� d�

(see [Bł1] or [Bł3]).
The Hörmander estimate has been one of the most useful results in the study of holo-

morphic functions of several variables. Another interesting and useful estimate is due to
Donnelly and Fefferman [DoF] (this paper in fact influenced [OT]).

Donnelly–Fefferman’s estimate. Let �, �, and � be as in Hörmander’s estimate. Assume
in addition that � is plurisubharmonic in � and such that i�� ∧ ��� i��� (which is
equivalent to the fact that � = − log(−v) for some negative plurisubharmonic v). Then
there exists u ∈ L2

loc(�) solving (1.1) and such that

∫
�

|u|2e−� d��4
∫
�

|�|2
i���

e−� d�.

Berndtsson [Be3] showed that Donnelly–Fefferman’s estimate is a formal consequence
of Hörmander’s estimate (see also [Bł2]), which is not the case with the Ohsawa–Takegoshi
theorem.

We will now sketch a recent proof of Theorem 1.1 due to Berndtsson.

Proof of Theorem 1.1. [Sketch] We follow [Be4] (see also [Be2]). Without loss of gen-
erality we may assume that H = {z1 = 0} and � ⊂ {|z1| < 1}. By approximating � from
inside and � from above we may assume that � is a strongly pseudoconvex domain with
smooth boundary, � is smooth up to the boundary, and f is defined in a neighborhood of
�′ in H. Then it follows that f extends to some holomorphic function in � (we may use
Hörmander’s estimate with � = �(�(z1) f (z′)), � = 1 near 0 but with support sufficiently
close to 0, � = 2 log |z1| will ensure that u = 0 on H).

Let F ∈ H2(�, e−�) := O(�) ∩ L2(�, e−�) be the function satisfying F = f on H
with minimal norm in L2(�, e−�). Then F is perpendicular to functions from H2(�, e−�)
vanishing onH, and it is thus perpendicular to the space z1H2(�, e−�).This means that z1F
is perpendicular to H2(�, e−�). Since (H2(�, e−�))⊥ = (ker �)⊥ is equal to the range of
�
∗
, we have �

∗
�= z1F for some � ∈ L2

(0,1)(�, e−�). Choose such �with the minimal norm.

Then � is perpendicular to ker �
∗
, and thus �� = 0. One can also show that the tangential

component of � vanishes on the boundary (or in otherwords � satisfies �-Neumann boundary
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condition), that is
∑
j

� j� j = 0 on��, (1.2)

where � is a defining function for �. We have
∫
�

|F |2e−� d� = 〈F/z1, �
∗
�〉e−� = 〈�(F/z1), �〉e−� = 〈F�(1/z1), �〉e−�

= 	
∫
�′

f �1e
−� d�′

�	

(∫
�′

| f |2e−� d�′
)1/2(∫

�′
|�1|2e−� d�′

)1/2

. (1.3)

It is thus enough to estimate
∫
�′ |�1|2e−� d�′. We will use the Bochner–Kodaira technique

(terminology of Siu [S2], see [Be2] for details). One may compute that

∑
(� j�ke

−�) j k̄ = (−2Re (��
∗
� · �) + |�∗

�|2 +
∑

|� j,k̄ |2 − |��|2

+
∑

� j k̄� j�k)e
−�.

Integrating by parts and computing further one can show that for any (sufficiently regular)
form � satisfying (1.2) and a function w

∫
�

∑
w j k̄� j�ke

−� d� −
∫
��

∑
� j k̄� j�ke

−�w
d


|��|
=

∫
�
(−2Re (��

∗
� · �) + |�∗

�|2 +
∑

|� j,k̄ |2 − |��|2 +
∑

� j k̄� j�k)e
−�w d�.

In our case we have �� = 0, �
∗
� = z1F , and if we take negative w depending only on z1,

then ∫
�

w11̄|�1|2e−� d�� − 2Re
∫
�
F�1e

−�w d� (1.4)

(since we may choose plurisubharmonic �). Set

w := 2 log |z1| + |z1|2� − 1,

where 0< �< 1. Then w11̄ = 	�′
0 + �2|z1|2�−2 and for t > 0

	
∫
�′

|�1|2e−� d�′ + �2
∫
�

|�1|2|z1|2�−2e−� d�

� t
∫
�

|F |2e−� d� + 1

t

∫
�

|�1|2w2e−� d�.

Choosing t with w2��2t |z1|2�−2 in {|z1|�1} and combining this with (1.4) we arrive at
∫
�

|F |2e−� d�� t	
∫
�′

| f |2e−� d�′. �
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2. The Bergman kernel

In this section we will present some applications of Theorem 1.1 related to the Bergman
kernel (on the diagonal)

K� := sup

{
| f |2 : f ∈ O(�),

∫
�

| f |2 d��1

}
.

For a ball we have

KB(z0,r )(z) = n!r2

	n(r2 − |z − z0|2)n+1 .

Note that from Theorem 1.1 we immediately get

K�′ �C�K� on �′. (2.1)

The original motivation (see [O1]) behind [OT] was the following estimate.

Theorem 2.1. Assume that � is a bounded pseudoconvex domain with C2 boundary. Then

K� �
1

C�2�
, (2.2)

where C is a constant depending on � and ��(z) is the euclidean distance from z ∈ � to
��.

Proof. It follows almost immediately from Theorem 1.1 For let r > 0 be such that for any
w ∈ �� there exists w∗ ∈ Cn\� such that � ∩ B(w∗, r ) = {w}. If z ∈ �, w ∈ �� is such
that ��(z) = |z − w|, and w∗ is as above then z, w, and w∗ lie on the same line (normal to
�� at w). For the corresponding complex line H and �′ = � ∩ H we obtain

K�(z)�
1

C�
K�′ (z)�

1

C�
KC\�(0,r )(r + |z − w|) = r2

	C���(z)2(2r + ��(z))2
. �

The exponent 2 in (2.2) is optimal (for example it cannot be improved for a domain whose
boundary near the origin is given by |z1 − 1| = 0). Previously a weaker form of (2.2) was
proved by Pflug [P] using Hörmander’s estimate (with arbitrary exponent lower than 2).

A domain is called hyperconvex if it admits a bounded plurisubharmonic exhaustion.
Of course every hyperconvex domain is pseudoconvex. In dimension 1 hyperconvexity
is equivalent to regularity. In higher dimensions it was proved by Kerzman and Rosay
[KR] that hyperconvexity is a local property of the boundary and by Demailly [D2] that
any pseudoconvex domain with Lipschitz boundary is hyperconvex. (That any bounded
pseudoconvex domain with C2 boundary is hyperconvex follows from an earlier result of
Diederich and Fornæss [DF].)

Theorem 1.1 was used in [O2] to prove the following result.

Theorem 2.2. For a bounded hyperconvex domain � in Cn one has

lim
z→��

K�(z) = ∞.
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The proof in [O2] consists of two steps: first a quantitative (in terms of potential theory)
lower bound for the Bergman kernel was shown in dimension 1 (using Hörmander’s esti-
mate), and then Theorem 2.2 followed easily from the extension theorem. In fact, one can
prove Theorem 2.2 using the complex Monge–Ampére operator instead of Theorem 1.1
(see [Bł1] or [Bł4]).

The extension theorem is also used in the following interesting result of Pflug andZwonek
[PZ].

Theorem 2.3. For a bounded pseudoconvex domain � in Cn the following are equivalent:

(i) � is an L2-domain of holomorphy (that is� is a domain of existence of a function from
H2(�));

(ii) �� has no pluripolar part (that is if U is open then U ∩ �� is either empty or non-
pluripolar);

(iii) lim sup
z→w

K�(z) = ∞, w ∈ ��.

3. The Suita conjecture

As noticed by Ohsawa [O3], Theorem 2.2 is closely related to the following conjecture
of Suita [Su]: for a bounded domain D in C one has

c2D �	KD , (3.1)

where

cD() = exp lim
�→

(GD(�, ) − log |� − |),  ∈ D,

is the logarithmic capacity of C\D w.r.t.  (GD denotes the Green function of D with
negative sign). It is easy to show that equality holds in (3.1) if D is simply connected, and
Suita [Su] showed strict inequality in (3.1) when D is an annulus (and thus also when it is
any smooth doubly connected domain). By approximation, it is enough to prove (3.1) for
bounded m-connected domains with smooth boundary.

It is perhaps interesting that so far only the methods of several complex variables proved
successful in this kind of problem for an arbitrary domain. The relation of the Suita conjec-
ture to the extension theorem stems from the fact that (3.1) is equivalent to the following
statement: for every  ∈ D there exists f ∈ O(�) such that f () = 1 and∫

D
| f |2 d��

	

c2D()
.

Ohsawa [O3], using the methods of the proof of the extension theorem, proved the estimate

c2D �CK D (3.2)

with C = 750	. This constant has been improved in [Bł5] to 2	 (the proof in [Bł5] does not
use the L2 theory, only an estimate of Berndtsson [Be1] for a solution of a one-dimensional
�-Neumann problem).
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The Suita conjecture may thus be reformulated as follows: the optimal constant in the
Ohsawa estimate (3.2) is 	. It is however not just about an optimal constant. For let

�() := lim
�→

(GD(�, ) − log |� − |),

so that cD = e�. From the Schiffer formula saying that the expression

2

	

�2GD

�z�w

is equal to the Bergman kernel off the diagonal (see e.g. [B]) one can easily show that KD =
�̄/	 (this was proved originally in [Su] with a more complicated argument). Therefore
(3.1) reads

−
�̄

e2�
� − 1, (3.1

′
)

and the left-hand side is precisely the curvature of the metric e�|d|. One can show that
if D has a smooth boundary then the left-hand side of (3.1′) is smooth up to the boundary
and we have equality in (3.1′) on the boundary. The Suita conjecture thus predicts that
the curvature satisfies the maximum principle in D (globally). It is perhaps worth noticing
that this property does not hold for the metrics �̄|d|2 and log(�̄)̄|d|2 (the latter
is precisely the Bergman metric) already in an annulus (this can be deduced from the
computations in [Su]).

The estimate (3.2) does not follow from the statement of Theorem 1.1. Ohsawa [O4]
generalized Theorem 1.1 so that it includes (3.2). The following result is a variation of this
and can be found in [Di2].

Theorem 3.1. Let� be a bounded domain in Cn such that� ⊂ D×Cn−1 for some domain
D in C containing the origin. Let H := {z1 = 0} and �′ = � ∩ H . Then for any f ∈ O(�′)
and � ∈ PSH (�) there exists F ∈ O(�) with F = f on �′ and∫

�
|F |2e−� d��

4	

cD(0)2

∫
�′

| f |2e−� d�′.

The right formulation of the Suita conjecture in several variables seems to be that the
constant in Theorem 3.1 can be improved to 	/cD(0)2.

4. The Demailly approximation

So far we have used Theorem 1.1 only with � ≡ 0. The fact that the weight may be
an arbitrary plurisubharmonic function was used by Demailly [D3] to introduce a new
type of regularization of plurisubharmonic functions: by smooth plurisubharmonic func-
tions with analytic singularities (that is functions that locally can be written in the form
log(| f1|2 + · · ·+ | fk |2)+ u,where f1, . . . , fk are holomorphic and u is C∞ smooth) which
have very similar singularities to the initial function. The Demailly approximation turned
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out to be an important tool in complex geometry,see e.g. [D3,DPS,DP] or [Po]. Demailly
[D3] presented also a simple proof of the Siu theorem on analyticity of level sets of Lelong
numbers of plurisubharmonic functions ([S1],see also [H]). As we will see below,the De-
mailly approximation shows that the Siu theorem follows rather easily from Theorem 1.1
applied when H is just a point (note that in this case Theorem 1.1 is trivial for � ≡ 0,but it
is no longer true for Theorem 3.1).

Recall that the Lelong number of � ∈ PSH (�) at z0 ∈ � is defined by

��(z0) = lim
z→z0

�(z)

log |z − z0| = lim
r→0+

�r (z0)

log r
,

where for r > 0 we use the notation

�r (z) := max
B(z,r )

�, z ∈ �r := {�� > r}.

One can show that �r is a plurisubharmonic continuous function in �r , decreasing to � as
r decreases to 0. Now we are in position to prove a result from [D3].

Theorem 4.1. For a plurisubharmonic function � in a bounded pseudoconvex domain �
in Cn and m = 1, 2... set

�m := 1

2m
log K�,e−2m� = 1

2m
log sup

{
| f |2 : f ∈ O(�),

∫
�

| f |2e−2m�
�1

}
.

Then there exist C1,C2 > 0 depending only on � such that

� − C1

m
��m ��r + 1

m
log

C2

rn
in �r . (4.1)

In particular, �m → � pointwise and in L1
loc(�). Moreover,

�� − n

m
���m

��� in �. (4.2)

Proof. First note that (4.2) is an easy consequence of (4.1): by the first inequality in (4.1)
we get ��m

���−C1/m = ��, and by the second one

�r
m ��2r + 1

m
log

C2

rn
,

thus �� − n/m���m
.

By Theorem 1.1 for every z ∈ � there exists f ∈ O(�) with f (z) � 0 and∫
�

| f |2e−2m� d��C�| f (z)|2e−2m�(z).

We may choose f so that the right-hand side is equal to 1. Then

�m(z)�
1

m
log | f (z)| = �(z) − 1

2m
logC�

and we get the first inequality in (4.1).
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To get the second one we observe that for any holomorphic f the function | f |2 is in
particular subharmonic and thus for z ∈ �r

| f (z)|2�
1

�(B(z, r ))

∫
B(z,r )

| f |2 d��
n!

	nr2n
e2m�r (z)

∫
B(z,r )

| f |2e−2m� d�.

Taking the logarithm and multiplying by 1/(2m) we will easily get the second inequality in
(4.1). �

By (4.2) for any real c we have

{�� �c} =
⋂
m

{
��m

�c − n

m

}
. (4.3)

If {
 j } is an orthonormal basis in H2(�, e−2m�) then

K�,e−2m� =
∑
j

|
 j |2 (4.4)

and one can show that{
��m

�c − n

m

}
=

⋂
|�|<mc−n

⋂
j

{��
 j = 0}.

Therefore (4.3) is an analytic subset of �, which gives the Siu theorem [S1].

Theorem 4.2. For any plurisubharmonic function � and a real number c the set {�� �c}
is analytic.

The following sub-additivity property was proved in [DPS]. It also relies on the extension
theorem, here, however, we will be using it for the diagonal of � × �.

Theorem 4.3. With the notation of Theorem 4.1 there exists C3 > 0, depending only on �,
such that

(m1 + m2)�m1+m2
�C3 + m1�m1

+ m2�m2
.

Proof. Take f ∈ H2(�, e−2(m1+m2)�) with norm �1. If we embed � in � × � as the
diagonal then by Theorem 1.1 there exists F holomorphic in�×� such that F(z, z)= f (z),
z ∈ �, and∫

�×�
|F(z, w)|2e−2m1�(z)−2m2�(w) d�(z)d�(w)�C(=C�×�). (4.5)

If {
 j } is an orthonormal basis in H2(�, e−2m1�m1 ) and {
′
k} an orthonormal basis in

H2(�, e−2m1�m2 ) then one can easily check that {
 j (z)
′
k(w)} is an orthonormal basis

in H2(� × �, e−2m1�m1
(z)−2m2�m2

(w)). We may write

F(z, w) =
∑
j,k

c jk
 j (z)

′
k(w)
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and by (4.5)
∑
j,k

|c jk |2�C .

Therefore by the Schwarz inequality

| f (z)|2 = |F(z, z)|2�C
∑
j

|
 j (z)|2
∑
k

|
′
k(z)|2 = Ce2m1�m1

(z)e2m2�m2
(z)

(using (4.4)). Since f was arbitrary, the theorem follows with C3 = (logC)/2. �

Corollary 4.4. The sequence �2k + C3/2k+1 is decreasing.

It is an open problem if the whole sequence �m from Theorem 4.1 (perhaps modified by
constants as in Corollary 4.4) is decreasing.
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