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Introduction

This manuscript is a draft version of lecture notes of a course I gave at the Jagiellonian
University in the academic year 1997/98. The main goal was to present the fundamental
results of the pluripotential theory like Josefson’s theorem on the equivalence between
locally and globally pluripolar sets and Bedford-Taylor’s theorem stating that negligible
sets are pluripolar. The main tool is the theory of the complex Monge-Ampere operator
developped by Bedford and Taylor in the 70’s and 80’s. Relying on their solution of the
Dirichlet problem in [BT1]| they wrote a breakthrough paper [BT2] which is where the
most important results of these notes come from. Some of them appeared a little earlier
in [Bedl] and [Bed2].

The main inspiration in writing these notes were Demailly’s excellent articles [Dem?2]
and [Dem3|. T was fortunate to start learning the subject during my student times from
a Demailly preprint survey which was later expanded into two parts [Dem2] and [Dem3].
Unfortunately, [Dem3] has never been published! One of Demailly’s contributions was a
major simplification of the solution of the Dirichlet problem for the homogeneous Monge-
Ampere equation from [BT1].

The material presented in the first three chapters almost coincides with the core of
Klimek’s monograph [Kli2]. However, many proofs have been simplified. The reader is
assumed to be familiar with the basic concepts of measure theory, calculus of differential
forms, general topology, functional analysis and the theory of holomorphic functions of
several variables. (One should mention that we make use of the solution of the Levi
problem only in the proof of Theorem 1.4.8 which is later used to prove Theorem 3.2.4.)

In Chapter I we present a self-contained exposition of distributions, subharmonic and
plurisubharmonic functions, regular domains in R™ and C™ as well as the theory of non-
negative forms and currents. The exposition is by no means complete, we only concentrate
on results that will be used in the next chapters. The presentation of distribution theory
in Section 1.1 is mostly extracted from [Hor2]. The main result, Theorem 1.1.11, is a weak
version of the Sobolev theorem and states that functions with locally bounded partial
derivatives are Lipschitz continuous. This is later needed in the solution of the Dirichlet
problem for the complex Monge-Ampere operator. In section 1.2 we prove basic facts con-
cerning subharmonic functions and regular domains in R”. The most important one for
us is due to Bouligand and asserts that a boundary point admitting a weak subharmonic
barrier is regular (Theorem 1.2.8). This is one of rather few results from potential theory
in R™, m > 3, that we will use in C"=R?". One of the sources when writing Section 1.2
was Wermer’s exposition [Wer|. In Section 1.3 we collect results on nonnegative currents,
the results coming mostly from Lelong’s exposition [Lel] and [HK]. In Section 1.4 we prove
the basic properties of plurisubharmonic functions. Then we exploit the concept of the
Perron-Bremermann envelopes and a notion of a maximal plurisubharmonic function. We
characterize bounded domains in C" admitting strong and weak plurisubharmonic barriers
(resp. B-regular and hyperconvex domains).

In Section 2.1 we define the complex Monge-Ampere operator for locally bounded
plurisubharmonic functions and show the basic estimates as well as the continuity of the
operator with respect to decreasing sequences. The principal result of Section 2.2 is the
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quasi-continuity of plurisubharmonic functions with respect to the relative capacity. Sev-
eral applications are then derived, including the continuity of the complex Monge-Ampere
operator with respect to increasing sequences, and the domination principle. The Dirichlet
problem is solved in Section 2.3.

In Chapter III we prove Josefson’s theorem and Bedford-Taylor’s theorem on negligible
sets and then use them to present the theory of three kinds of extremal plurisubharmonic
functions: relative, global and the pluricomplex Green function. It should be pointed out
that results like Propositions 3.1.3, 3.2.1, 3.3.1, 3.3.2, 3.3.3, Theorems 3.2.4, 3.2.5, 3.3.4
and parts of Propositions 3.1.9, 3.2.6, Theorems 3.2.3, 3.2.9 are proven in an elementary
way, that is without using Chapter II.

We have included a number of exercises. If they are double-boxed, then it means that
the result will be used later on.

In the appendix we collect some elementary facts. We have also included a list of open
problems. Most of them arose while preparing the course but they are certainly not meant
to be the most important questions or to represent the current development of the theory.

One more chapter on applications of pluripotential theory in complex and non-complex
analysis is planned in some future...

The course which these notes are based on was given at the Jagiellonian University
while I had a special research position at the Mathematical Institute of the Polish Academy
of Sciences and thus no other teaching duties. This introduction was written during my
stay at the Mid Sweden University in Sundsvall. I would also like to thank U. Cegrell,
A. Edigarian, S. Kotodziej, P.Pflug, E. Poletsky, J. Siciak and W. Zwonek for consultations
on some problems related to the present subject.

Sundsvall, May 1998

Author’s address:
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Krakéw
Poland
e-mail: blocki @im.uj.edu.pl



I. Preliminaries

1.1. Distributions and the Laplacian

Let 2 be an open set in R™. On a vector space C’(’f(Q), k=0,1,2,...,00, we introduce
a topology as follows: a sequence {¢;} is convergent to ¢ iff
i) there exists K € 2 such that supp¢; C K for all j;
ii) for all multi-indices v € N with || < k we have D%p; — D%y uniformly (if k = oo
then for all «).
If D(2) = C§°(2) with this topology then by D’(€2) we denote the set of all (complex)
continuous linear functionals on D(2) and call them distributions on 2. We say that

u € D'(Q) is a distribution of order k if it can be continuously extended to C%(Q).

Theorem 1.1.1. Let u be a linear functional on C§°(2). Then u is a distribution iff for
all K € Q) there is k and a positive constant C' such that

(1.1.1) () <C > D%, ¢ € C(Q), suppy C K.
jal<k

u is a distribution of order k iff (1.1.1) holds with this k for all K € ().

Proof. That (1.1.1) implies that u is a distribution is obvious. Assume that u € D'(2)
and that (1.1.1) does not hold for some K & 2. Then for every natural j there exists
P; € C§°(K) with

e >4 Y 1Dl

lo| <j

and u(p;) = 1. Then for any a and j > |a| we have |[D%p;| < 1/j. Thus ¢ — 0 in
C§°(£2) which is a contradiction. Similarly we prove the second part of the theorem. m

If ' is an open subset of 2 and u € D’(Q) then the restriction u|o is well defined
by the natural inclusion C§° (") C C5°(2). Being a distribution is a local property as the
following result shows:

Theorem 1.1.2. Let {;} be a an open covering of Q. If u,v € D'(Q) are such that
u =v on §); for every j, then u = v in Q. On the other hand, if u; € D'(§);) are such that
uj = uy on Q; N Qy then there exists a unique u € D'(QY) such that u = u; on ;.
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Proof. Partition of unity gives ¢; € C§°(2) such that supp ¢; € Q;, the family {supp ¢, }
is locally finite and ), ¢; = 1 in Q. For u € D'(2) and ¢ € C§°(12) we have

u(yp) = u(z W) = u(pjp)
J J
since the sum is in fact finite. This proves the first part. If u; € D'(Q2;) and ¢ € C°(Q)

then we set
u(p) = u; (p;p).
J

One can easily show that v € D'(€2). Then for ¢ € C§°(€Q) we have p;p € C5°(Q2; N Q)

and
u(p) = Zuj (pjp) = Zuk (pjp) = ug <Z %w) = ug(p).

The uniqueness follows from the first part. m

By the Riesz representation theorem (see [Rud, Theorem 6.19]), distributions of order
0 can be identified with regular complex measures by the following

u(p) = /Q o, € ColQ).

Similarly, nonnegative distributions (that is u(p) > 0 whenever ¢ > 0) are in fact nonneg-
ative Radon measures (see [Rud, Theorem 2.14]). (Here it is even enough to assume that
u is just a nonnegative linear functional on C§°(€2).)

A function f € L{ (Q) defines a distribution of order 0:

loc

urle)i= [ fodh o€ Cu(@).

Here A denotes the Lebesgue measure in R".

Partial derivatives of a distribution are defined as follows:

(Dju)(p) :==—u(Djp), j=1,....,n, ¢ D).

Then Dju € D'(Q2). Integration by parts gives Djuy = up,s for f € C1(Q) and thus the
differentiation of a distribution is a generalization of a classical differentiation.

If w e D'(Q2) and f € C*°(Q) then we define the product

(fu)(p) :==ul(fp), ¢ C5(Q).
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Then fu € D/'(2). The same definition applies if u is a distribution of order k and
f € C*(Q) - then fu is a distribution of order k. One can easily show that

Dj(fu) = iju + Djf u.

Let A = Zj DJQ- be the Laplace operator.

Proposition 1.1.3. If Q) is a bounded domain in R" with C? boundary and u,v € C?(Q)

then 5 5
v U
Av —vA = — —v=— .
/Q(u v — vAu) dA /60 (uan v@n) do
Proof. The Stokes theorem gives

ov ou /
U— —v— | do = uVv —vVu,n)do
[ (g =5 4o = [ /

= / div(uVv — vVu) d\ = / (uAv — vAu) d\. m
Q Q

For a function u(z) = f(|x|), where f is smooth, we have D;u(x) = x; f'(|x|)/|z| and
Au(z) = f"(|x|) + (n—1)f'(|x|)/|x|. The solutions of the equation 3’ + (n—1)y/t = 0 are
of the form y(t) = Ct'=", where C' is a constant. For ¢t > 0 define

~ 5 log t, ifn=2
E(t) = — b —t27n if n # 2
(n—2)cn, ) ’
where ¢, is the area of the unit sphere in R”. Note that for t > 0 E'(t) = 1/0(8B;), where
Bt - B(O, t)

Theorem 1.1.4. Set E(z) := E(|z|). Then E € L. (R") and D;E = xj|lz|™"/c, €

loc
Li (R™) as a distribution, j = 1,...,n. E is the fundamental solution for the Laplacian,

that is AE = 4y, where
do(p) = ©(0), ¢ € Co(R™)
is called the Dirac delta.

Proof. On R™\ {0} £ is smooth and we have D;E = x;|z|~"/c, and AE = 0 there. For
¢ € C3°(BRr) integration by parts gives

DjE(y) = —E(D;p) = — lim . E Djpd\
R €

= lim / o(x)zjlz|™"/cnd(x) +/ Eon;do
=0\ JBr\B. 9B,

_ /B o2)2; |2~ endA(z),
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since lim._, J(@Bg)E(s) = 0. Therefore D;E = zj|z|~"/c,. Similarly, by Proposition
1.1.3

OF Oy
AFE(p) = lim EAgp—hm ( — —-F— )da

. 1

i) Let Q be a bounded domain in R with C* boundary. Show that D;xq =
—nj do, where xq is the characteristic function of {2, n; is the j-th coordinate of the outer
normal of €2 and do is the surface measure of 0.

ii) Show that
0 (1
7 (‘) = o

If ue L (Q) and v € LF(R™) then

(uxv)(z) = / w(y)v(e — y)dA(y) = / u( — y)o(y)dA(y)

The integration is in fact over the set {x} — suppv and we only take those = for which
{z} —suppv C Q.
For a test function ¢ we then have

(u %) // Y)dA(y)o(x)d(z)
— [ [v@te + par@umar

< v * gp))
where ¢(z) = p(—x).
We want to define the convolution u * v when u and v are distributions. First, if
u € D'(Q) and ¢ € C°(R™) we set

(uxp)(z) == u(p(z - )

for  from the set
(1.1.2) Q' :={zeR": {z} —suppyp C Q}.

One can see that u * ¢ is determined in a neighborhood of x by u restricted to a neighbor-
hood of {x} — supp ¢.



Theorem 1.1.5. For u,v € D'() and p,9 € C5°(R™) we have
i) uxee C°);
ii) D*(u* @) = u*x DY = D%u % p;
iii) supp (u * ¢) C supp u + supp ¢;
iv) (ux @) *x 1 =ux* (p=*1) on the set

Q" ={z e R": {a} — (supp ¢ + supp®)) C Q};
9 (e p)) = u(Ei) =u ((px0) ) ifsupp ©
vi) If u x ¢ = v % ¢ for ¢ with support in an arbitrary small neighborhood of 0, then

u="nv.

Proof. Write
pla+h) = ¢@) + Y h;Dje(x) + Ru().
J
Then
(wx ) (@ +h) = ulp(z +h =) =ulp(e =)+ _hju(Djplx =) +u(Ru(z - ))
J

and u (Djp(x —+)) = Dju(¢(x — -)). By Theorem 1.1.1 and Taylor’s formula we have for
some finite k

[u(Rp(z = )| < C Y ID*Ru(z — )| = o(|A])

|| <k
uniformly in h. Hence
(us @)(@+h) = (uxp)(z)+ Z hj (ux Dje)(x) + o(|hl).

Therefore u * ¢ is differentiable (in particular continuous) and
Di(u*¢)=u*D;jp = Djuxp,

thus u * p € C1. Tteration of this gives i) and ii).
iii) If = ¢ suppu + supp ¢ then suppun ({x} —suppy) =0 and (u* ¢)(z) = 0.
iv) One can easily show that

pxp=1lim Y "o(- —ey)v(ey)
yeL™

in C§°(Q"). Thus

(u (95 9) () = u(l;n S ol - eyw(ey))

YyeL”

- gl_r% Z e™(ux* @)(x —ey)(ey)
YyeL™

= ((ux @) x ) (2).
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v) We have

and, similarly as above,

- U(ILHZ " olea = ler) )
—u( [ et - @are))
—u (G

vi) Let x € Q' and take ¢ € C5°(Q) with support in a small neighborhood of z. If

p:=(x—"-) then Y = p(x—-) and u(v)) = (u*xp)(x) = (v*p)(x) = v(¢h). The conclusion
follows from Theorem 1.1.2. m

Let p € C5°(R™) be such that p > 0, suppp = B(0,1), [ pd\ =1 and p depends only
on |z|. Set p.(z) := e "p(x/e). Then supp p. = B(0,¢) but [ p.d\ = 1. Theorem 1.1.5
gives the following result:
Theorem 1.1.6. If u € D'(Q), then u. := u* p. € C*>°(Qe), where
Q. = {x € Q:dist (z,00) < €},
and u. — u weakly as € — 0 (that is u. () — u(p) for every ¢ € D()).

Proof. By Theorem 1.1.5.v it is enough to observe that p. ¥ ¢ — ¢ in C§°(Q2). =

Theorem 1.1.7. Ifu € D'(Q) then there exists a sequence u; € C3°(2) such that u; — u
weakly.

Proof. Take x; € C§°(€2) such that supp x; C ©/; and {x; = 1} T Q as j T co. Set

uj = (X;u) * p1/;-
Then by Theorem 1.1.5 u; € C5°(£2) and for ¢ € C5°(£2) and j big enough

u;(p) = u(x;(p1/; * ©)) = u(pr; * ). =

Suppose u € D'(2) and let v € D/(R™) have a compact support. We define

(wrv)(p)i=u((v+9), weCE@)
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where Q' is given by (1.1.2). By Theorem 1.1.5.v this definition is consistent with the
previous one if v is smooth.

Theorem 1.1.8. We have
i) uxveD(Y);
i) (u*v)*w =wux* (v*w) if w is a distribution with compact support;
iii) D*(u % v) = u % D% = D“u % v;
iv) supp (u * v) C supp u + supp v;
v) u*xv =v*u if u has a compact support;
vi) u* dp = u.

Proof. i) If ¢; — 0 in C§°(Q) then v * ¢; — 0 in C5°(12).
ii) First we want to show that

(1.1.3) (u*xv)*xp=mux*(v*p)

if ¢ is a test function. We have

((w0) ) (@) = (wrv)(ple — ) =u (v p(z - )

and

(v oz =) (y) =v(p(z —y =) = (v p)(x —y)
thus (1.1.3) follows. Now one can easily show ii) using (1.1.3) and Theorem 1.1.5.vi.
iii) It follows easily from ii), Theorems 1.1.5.ii and 1.1.5.vi.
iv) Let ¢ € C§°(€') be such that supp ¢ N (supp u+suppv) = (). By Theorem 1.1.5.iii
we have

—_—

supp (v * ¢) C —(suppv — supp ).

Since (supp ¢ — suppv) Nsuppu = 0, it follows that (u * v)(¢) = 0.
v) If v, € Cg°(R™) have support in a small neighborhood of 0 then by ii), Theorem
1.1.5.i and the commutativity of the convolution of functions we have

UKV Q*xYY =UxYF*V*Q=0V*kQ*xU*Y = V*U*Qx.
By Theorem 1.1.5.vi used twice we conclude that u * v = v * w.

vi) Follows directly from the definition. m

If u is a distribution then by singsupp u denote the set of those x such that u is not
C*° in a neighborhood of z.

Theorem 1.1.9. singsupp (u * v) C singsupp u + sing supp v

Proof. Take x ¢ singsuppu + singsuppv. We have to show that u * v is C* in a
neighborhood of z. Let ¢ € C§°(R™) be such that ¢ = 1 in a neighborhood of singsupp v
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and = ¢ singsupp u + supp¥. The last condition means that v is C'* in a neighborhood
of {z} — supp. We have

uxv=ux(v)+ux*((1 —1)v)

and the last term is C*° by Theorem 1.1.5.i, since (1 — ¢p)v € C3°(R™). Let ¢ € C3°(Q2)
be such that ¢ = 1 in a neighborhood of {x} —supp® and u is C* in a neighborhood of
supp ¢. Then

u* (Pv) = (pu) * (o) + ((1 = )u) * (Yv).

The first term is C*° by Theorem 1.1.8.v and Theorem 1.1.5.i, since pu € C§°(2). By
Theorem 1.1.8.iv the support of the second term is contained in the set supp (1—¢)-+supp ¢
which does not contain x. m

Corollary 1.1.10. If u € D'(Q2) then sing supp u = sing supp Au.

Proof. Obviously singsupp Au C singsuppu. Let ' € 2 and take x € C§°(Q) such that
X = 1 in a neighborhood of €. Then yu = AFE * (ux) = E * A(uyx). Thus by Theorem
1.1.9

Q' Nsingsuppu = Q' Nsingsupp (yu) C ' Nsingsupp A(xu) = Q' N sing supp Au

and the corollary follows. =

The following result is a very weak version of the Sobolev theorem. The full version
can be found in [Hor2].

Theorem 1.1.11. Assume that 2 is a convex domain. Let u € D'(Q2) be such that
Dju € L*(Q), j =1,...,n. Then u is a Lipschitz continuous function in 2. The clas-
sical derivatives of u given by the Rademacher theorem coincide with the distributional
derivatives.

Proof. First we show that u is continuous. Take (2" € 2 and let x € C5°(£2) be such that
X > 0 and xy =1 in a neighborhood of €. Then by Theorems 1.1.4 and 1.1.8

xu=AFE* (xu) = ZDjE * Dj(xu)

J

J J

By Theorem 1.1.9 D; Ex(uD;x) € C* () and D, Ex(xD;u) is continuous by the Lebesgue
bounded convergence theorem, since D;E € L (R") and xDju € L§°(2). Hence, u is
continuous.
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Assume that |[Dju| < M in Q, j=1,...,n. If u. =ux*p. € C°(§) then u. — u
uniformly as ¢ — 0, |Dju.| < M and by the mean value theorem

ue(x) —uc(y)] < Mz —yl, w,y € Qe.

Thus wu is Lipschitz continuous.
The last part of the theorem follows immediately from Proposition Al1.3. =

Theorem 1.1.12. Let u be a distribution and k = 1,2, ...

i) If D% is a locally bounded function for every a with |a| = k then u € C*¥~11 (that
is u € C*~! and partial derivatives of u of order k — 1 are Lipschitz continuous).

ii) If D%u is a continuous function for every o with |a| = k then u € C*.

Proof. It is enough to prove the theorem for £ = 1 and iterate. i) is then exactly Theorem
1.1.11 and to show ii) it suffices to observe the following elementary fact: if w is Lipschitz
continuous (thus differentiable almost everywhere) and D;u € L{S. can be extended to a
continuous function then Dju exists in every point and is continuous. m

Theorem 1.1.13. Assume that u; € C*11(Q) tend weakly to u € D'(Q) and that
|D%u;| < C < o0 if |a| = k. Then uw € C*~11(Q) and |D*u| < C if |a| = k.

Proof. By Theorem 1.1.12 it is enough to show that if u; € L>®(Q), |u;| < C and

w; — u € D'(Q) weakly, then u € L®(Q), Ju| < C. We have L®(Q) = (L*(Q))". By
the Alouglu theorem there exists v € L>(Q), |v| < C which is a limit of u; in the weak*

topology of (Ll(Q))/, thus u = v. =

1.2. Subharmonic functions and the Dirichlet problem

A function h is called harmonic if Ah = 0. By Corollary 1.1.10 every distribution with
this property must be a C'"*° function. The set of all harmonic functions in 2 we denote
by H(£2).

Let B = B(0, R) be aball in R". For y € B we want to find a function u € L{. (B) such
that Au = §, and mliIgB u(x) = 0. If we find h € H(B) N C(B) such that h(z) = E(x — y)
for x € 0B then a function of the form u(z) = E(x — y) — h(x) will be fine. For y # 0
we are thus looking for h of the form h(z) = E(a(x — By)), where a > 0 and |3| > R/|y|.
Since E(x) depends only on |z|, it is enough to find o and 3 such that |z —y| = |a(z— By)],
if |z| = R. It is enough to have

R2 - 2<.fE,y> + |y|2 = a2R2 - 20[2ﬁ<$,y> + 04262’2/’2,

thus R? + |y|? = o®?R? + a?3?|y|? and 1 = o?3. Therefore it suffices to take a = |y|/R
and 3 = R?/|y|?>. We have just proved the following result:
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Theorem 1.2.1. For z € B, y € B, where B = B(0, R), define

G a) = Gla) = Bla )~ B (o~ ).

Then G, € H(B(0,R?/ly) \ {y}) N L,

loc

(B(0,R?*/y])), AGy = 6, and Gylyp ) =0. =

G is called a Green function for B.
If h € H(B) N C?(B) then smoothing G, near y and using Proposition 1.1.3 we can
show that

(1.2.1) hiy) = /8B h() aaiy (x)do(z), ye B.

We want to compute 0G,/0n at x € 0B. For t > 0 set v(t) = E(V/); then ~/(t) =
(2¢,) "1t~ ™/2 and

Gy(z) = (2> = 2(z,y) + yI*) — v(lzP|y|*/R® — 2(z, y) + R?).

Therefore,

x € 0B, y € B.

Theorem 1.2.2. For f € L>*(9B), where B = B(yo, R), set

R? — |y —yol
h ::/ x do(z), ye€ B.
)= [ 1) gl o)

Then h is harmonic in B and if f is continuous at some xy € OB then

lim h(y) = f(xo)-

Y—=To
In particular, if f € C(0B) then h € C(B).

Proof. We may assume that yo = 0. G is symmetric and therefore

8, (%) - (8%) (AG.) (y) = 0.

Thus h is harmonic, since we can differentiate under the sign of integration.
Take e,7 > 0 and set A, := 9B N B(xo,r), ar = supy |f — f(zo)| and M :=
supgp |f — f(zo)|. By (1.2.1) we have

2 (02
/ &da(x) =1, yeB.
o5 cnRlz —y|
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If |y — 0| < e then R? — |y|? < 2eR, |z —y|>r—¢ forz € OB\ A, and

h(y) — f(z0)] < /a 1) = flao)l S

o)
A, JoB\A,

2¢R

<a + M7
Sar+ Mo

If we take r = ¢ + e/ +1) and let € tend to 0 then the theorem follows. m

A function u : Q — [—00, 4+00) is called subharmonic if it is upper semicontinuous,
not identically —oco on any connected component of €2 and for every ball B, = B(xg,r) €

u(zg) < @ /8& u(x)do(x).

The set of all subharmonic functions in € we denote by SH(2). It follows from (1.2.1)
that harmonic functions are subharmonic.

Theorem 1.2.3. Assume that u,v € SH(S?) and B, = B(xz¢,r) € Q. Then

i) u satisfies the maximum principle;
1
i) u(xg) < —/ u(x)dA(x);
B,

(Br)

iv) g(alBT) /aBT u(z)do(z) | u(zg) asr | 0;

V) Ue = u * pe is subharmonic and u. | u as e | 0;

vi) A decreasing sequence of subharmonic functions on a domain is converging point-
wise either to a subharmonic function or to —oo;

vii) If uw < v almost everywhere then u < v everywhere;

viii) If {uy} is a family of subharmonic functions locally uniformly bounded above
then u*, where u = sup,, uq, is subharmonic and u = u* almost everywhere. (u*, resp. u,
denotes the upper, resp. lower, regularization of u.)

Proof. i) Assume that u < u(zg) and u(z1) < u(xo) for some z1 with |x; —xo| = r. Then
from the upper semicontinuity it follows that for some ¢ > 0 we have u < u(zg) — ¢ on
E C 0B, with o(FE) > 0. Then

w(z0) < U(alBT) /aBr w(z)do(x) < (u(xg) — €)o(F) J;(fg(;f))(a(c‘?Br) —o(F)) < u(zo)

which is a contradiction.

14



ii) We have

1 T
B /BTu(x)d)\(l‘)— A(Br)/o ABtu(m)da(x)dt
- /OU(aBt)u(xo)dt

iii) Follows easily from ii), the upper semicontinuity of u and the fact that u is not
identically —oo.

iv) and v) we prove simultanously. First assume that u is smooth. Let r < R. By
Theorem 1.2.2 and (1.2.1) there is a unique h € H(Bgr) N C(Br) with h = u on dBpg.
Then h > v in Br and

1 1
T o, "1 S G o, M
1 1

- oo | | hladol) = / | ule)io (@)

Thus we have iv) for smooth functions. Now let u be arbitrary. The Fubini theorem gives

wepdon) < [ o

B(0,e) OBr /8Br u(z — y)pe(y)do(x)dA(y)

1
- 55 /8 | (ws pa) (@)

and thus u. is subharmonic. On the other hand

(ux pe) (o) = / u(o — ey)p(y)dA(y)

B(0,1)

_ /0 1 €n1_1 /8 . u(@)o @)

and from iv) it follows that u. is increasing in €. Thus we have v). Now we can approximate

1
u and see that the mean value ———— / u(x)do(z) is increasing in r. The upper
0B

o(0B,)
semicontinuity impiles that it must converge to u(zg) as r | 0.
vi) Follows from the upper semicontinuity and the Lebesgue monotone convergence
theorem.
vii) Follows immediately from iv) and ii).
viii) The Choquet lemma (Lemma A2.3) implies that we may assume that the family
{uq} is countable and thus that u is measurable. We have

1 1
u(zp) < sgp (B.) /aBT Ue(z)do(x) < 2L, /8BT u(x)do(z).
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The last expression is a continuous function with respect to x¢ and thus u* is subharmonic.
In the same way as in v) we check that u x p. satisfies the mean value inequality and thus
is subharmonic. Since u * p. * ps is increasing in 9, it follows that u * p. decreases to some
subharmonic v as € | 0. We have u * p. > g * p- > uq, hence u* p. > u* and v > u*. On

the other hand u * p. — w in L . and v = v > u* almost everywhere and viii) follows. m

Corollary 1.2.4. If u € SH(Q) and B € Q is a ball then there exists u € SH () such
that © > w, u = u outside B and u is harmonic in B. If u; | w then u; | u. If u is
continuous then so is u.

Proof. If u is continuous then the corollary follows from Theorem 1.2.2. If u is arbitrary
then take a sequence {u;} of continuous subharmonic functions near B decreasing to w.
Then u; decreases to some u € SH(2) and one can easily show that % has the required
properties. m

Theorem 1.2.5. A function u is subharmonic iff v is a distribution with Au > 0.

Proof. First assume that u is smooth. Suppose that u is subharmonic and Au < 0 in
some ball B. Let h € H(B) N C(B) be equal to u on OB and set v := u — h. Then
v € SH(B) N C(B), it vanishes on 0B and thus has a local minimum at some z’ € B.
Then v, (') >0, j =1,...,n, hence Av(z1) > 0 which is a contradiction. Now assume
that Au > 0. Considering u + e|z|* instead of u we may assume that Au > 0. We
have to show that u(xg) < h(xg). If there is 2”7 € B where u — h has a local maximum
then Au(z”) = A(u — h)(z”) < 0 which is a contradiction. Thus v < h in B and u is
subharmonic.

Now, take arbitrary v € D'(2) with Au > 0. Then Au. = A(u * p:) > 0, thus u. is
C*° and subharmonic, and so is Uz 5 = w*pe *ps. U 5 is increasing in § and ue 5 = us . | us
as € | 0, thus us is increasing in 0. Hence, as ¢ | 0, us decreases to some ug € SH(S2) and
tends weakly to u, thus u = ug. (This is why uo cannot be identically —oco.) On the other
hand, if u € SH(), then 0 < Au. = Au * p. — Au weakly, thus Au > 0. m

Proposition 1.2.6. If Q is a bounded domain, v € SH(2) and h € H(2) then

(u* <h,ondQ)= ((u—h)"<0ondQ) = (u<honQ).

Proof. Follows from the fact that (v — h)* < u* — h, and from the maximum principle. m

Throughout the rest of this section we assume that €2 is a bounded domain. The next
result is the main feature of the so called Perron method.
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Theorem 1.2.7. For f € L>(0N) define
h=h;q:=sup{v € SH(Q): v*[y, < f}.

Then h € H(Q2) (h is called the Perron envelope of f).

Proof. By B denote the family of all v € SH() with v*|y, < f. Take a ball B € Q,
xo € B and let v; € B be such that v;(xg) T h(zo). Using Corollary 1.2.4 we may
inductively define

up ‘= vq,
—_—

g = (max{u;, vj41}).

Then u; € B, u; is harmonic in B, increases to some h e H(B), where h < h. Tt remains

to show that i = h in B.
Take 21 € B and «; € B such that «;(z1) T h(x1). Define inductively

—

B1 := (max{uy, a1}),

Bj+1 = (maX{UjJrlaajJrl»ﬁj})-

Then 3; € B, u; < ; and f; is increasing to some 5 € H(B). We have h < B < h and
h(zg) = B(xp), thus by the maximum principle A = 5 in B. Now the theorem follows since

h(z1) = B(x1) = h(z1). =

A point zy € 99 is called regular if for every f € L°°(02) which is continuous at xg
we have

lim th( x) = f(zo).

r— I

Theorem 1.2.8. For x( € 0f) the following are equivalent

i) zq is regular;

ii) There exists a weak barrier at xo, that is u € SH(Q) such that v < 0 and
lim, ., u(x) = 0;

iii) There exists a local weak barrier at x, that is a weak barrier which is defined on
QNU, where U is a neighborhood of xq;

iv) There exists a strong barrier at xo, that is a weak barrier with additional property
Wl gy <0

v) There exists a local strong barrier at xg.

Proof. The implications iv)=+ii)=+iii) and iv)=-v) are clear. To show i)=riv) take f(z) =
—|z — x| and h = h;q. Then h < f in §, since f = inf{h € H(R") : h > f}, thus
h is a strong barrier. To prove v)=-iv) let u be a local strong barrier at xy defined in a
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neighborhood of Q N U. Take € > 0 such that u < —e on QN AU. Then it is easy to show
that the function
{ max{u,—e} on QNU,

—€ on Q\U

is a global strong barrier. Thus it remains to show iii)=-iv)=-1).

iv)=1i) Take f € L>°(02) such that f is continuous at xg. We may assume that
f(zo) =0. If e > 0 and u is a strong barrier then we can find ¢ > 0 such that cu* < f +¢
and cu® < —f + ¢ on 0Q. The first inequality implies that cu —e < h;q on Q. If
v € SH(Q) is such that v*|,, < f then (cu+ v —¢)* < 0 on 02 thus by the maximum
principle cu + v —e < 0 on ). Hence

cu—sghf@g—cu#—a

and limg .z, by o(x) = 0.

iii)=-iv) Let U be a neighborhood of z¢ and u € SH(Q N U) such that v < 0 and
limg .z, u(z) = 0. Set g(z) := |z — xo| and h:=h, . Then h € H(2) and g <h < M :=
supg, g, since g is subharmonic. It is enough to show that h*(z() = 0; then —h would be a
strong barrier.

Take ¢ > 0 such that B = B(zg,¢) € U. For a compact K € QN JB set

e 1 on (2\K)NJB,
"1 0 elsewhere on OB.

Theorem 1.2.2 gives I € H(B) such that 0 <1 <1,

(1.2.2) wH(SEI{III{l)ﬂaB I(x)=1
and Q\K)noB
o) = 22K 19B)

o(0B)

We may choose K so that I(zg) < e.
Now we want to find positive constants «, # and  so that

h<—-—au+pl+~ onQnNB.
To have this it is enough to check that
(1.2.3) v +aut < BI,+v ond(QNB)

for v € SH(Q) with v*[, < g. On QN B (1.2.3) holds if y =¢. On K v* < M and it is

enough to take
M —¢

oO=—,
—maxg U
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whereas on (2 \ K) N 0B, by (1.2.2), we may take § = M — . Thus

b < M —¢

< u+ (M —e)l+e
max u

and
h* (ZC'()) < (M - 5)8 T,

hence h*(xzg) =0. m
The implication iii)=-iv) in Theorem 1.2.8 is due to Bouligand.

Theorem 1.2.9. i) If n = 2 and a connected component of 0} containing x( is not a
point, then xq is regular.

ii) If there exists an open cone C with a vertex at xo and a neighborhood U of z( such
that CNUNQ = {x¢} then xq is regular.

Proof. i) By K denote the connected component of 9 containing zy and fix z; € K,
z1 # x. Let Q be a connected component of C \ K containing  (here C stands for the
Riemann sphere). Then €2 is simply connected, thus there exist a holomorphic f in 2 such

that /) = 2770 get u(z) := 1/Re f. For z near xy, we have
z— z21
log 2 = ol
u(z) = |z — 21| 1
FP 7 [Em @l

|z — 2

hence u is negative and lim,_,,, u(z) = 0.

ii) It is enough to show that for given 0 < @ < 1 the domain {z; < a|x|} (which is
a complement of a closed cone) is regular at the origin. Set u(z) := |x|*g(x1/|z|), where
a > 0 and g is a negative C? function on [—1,a]. One can compute that

Au(z) = [z|*7* (1 = *)g"(t) — (n = 1)tg'(t) + ala + 1 — 2)g(t)) ,

where t = z1/|z|. It is enough to find g with (1—#2)g”(t) —(n—1)tg’(t) >0 for -1 <t <a
and take « sufficiently small. m

Show that i) does not hold if n > 2.
We say that €2 is regular if all its boundary points are regular.

Theorem 1.2.10. For a bounded domain ) the following are equivalent:
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i) Q is regular;
i) For every f € C(952) we have h; o € H(§2) N C(Q) and hiq o f;

iii) There exists a bounded subharmonic exhaustion function in 2, that is u € SH ()
such that u < 0 and lim, 5o u(z) = 0.

Proof. It is enough to show that i) implies iii). Take a ball B € 2 and let f be equal to
0 on 02 and to -1 on @B. Then

o hf,Q\E on Q\ B
-1 on B

has the required properties. m

Show that if ) is regular then the Dirichlet problem

u e SH(),
Au = p,
ux = u* = f on 0N

has a unique solution provided that f € C(92) and p is either a nonnegative Radon
measure in {2 with compact support or u € LP((2) for some p > n/2. In the latter case the
solution is continuous on §2.

Let o be a nonnegative Radon measure in R™ with compact support. We set
UM = FE x pu.

U*" is called a potential of the measure p.

Theorem 1.2.11. i) U* € SH(R"™);
jDAU“
i) U4(2) = [ Bl — y)duy),
iv) Ifu € LP(R") for some p > n/2 then U* is continuous in R"™;

v) If u € CE(R™) then U* € C*(R"), k =0,1,2,...,00

Proof. i) and ii) follow from Theorems 1.1.8 and 1.2.5.
iii) For ¢ € C§°(2) we have

0r(e) = £ ((1+9) = [ [ Bele + iuire = [ [ B - yautyyetz)ar)

and iii) follows.
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iv) If p is a bounded function then it follows easily from the Lebesgue bounded con-
vergence theorem. Let p be arbitrary and let p; := max{u, j}. Then p; — p in LP(R™)
as j — oo and from the Hélder inequality we infer

UH5 (z) = U*(2)] < [|E| Lo ({w} —supp w115 — #ll o),

where 1/p+1/q =1, hence ¢ < n/(n — 2). Thus U* — U* locally uniformly in R".
v) Follows from iv) and Theorem 1.1.12. m

Show that subharmonic functions are in L} = for every p < n/(n — 2).

1.3. Nonnegative forms and currents

By C(p o Pra= 0,1,...,n, we denote the set of complex forms

<\ P
o= Z,OCJK<£) dzy NdzZg, oy €C.

Here >’ denotes the summation over increasing multi-indices and dz; = dzj, N+ Ndzj,,
dzZg = dzg, N --- A dzg,. The volume form is given by

A\ = %dzl/\dil/\-n/\%dzn/\din.
Ifag,...,op € C(l,O) then the form
1 - ) _
50[1/\0[1/\"'/\5041)/\04196@(17@)

is called an elementary nonnegative form.
Take a € (C(p ) We say that a is nonnegative and write o > 0 if a A 3 > 0 for

all elementary nonnegative forms in C(n_p — We say that « is real if @ = « (that is
AJK :aKJ for all J,K with |J| = |K| Zp).

Proposition 1.3.1. Write

a= .;1 ajk§dzj Ndzi € Cq qy.
j.k=

Then « is nonnegative iff the matrix (o)) is nonnegative.
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Proof. Take

n
a; =Y ajdz €Cugy, j=1,...,n—1.
k=1

Then

n
A Nap g =Y Mydzr Ao Adzg_y Adzggy A Aday,
k=1

.....

t=1,..., n, t#k
i i -
a A 50&1 AN A ARERAN §Oén_1 NQp_1 = 'kzl ajijMkd)\
J,r=

and the proposition follows. =

Theorem 1.3.2. Let o € C(p ) and (8 € C(l 1 be nonnegative forms. Assume moreover
that (8 is real. Then ao A\ 3 > 0.

Proof. Write _
)
B=>" ajkdz; A dzy
J.k

and A = (a;i). Since [ is real, A is a hermitian matrix. Let P be a unitary matrix
(that is PTP = (§;1)) such that B := P~1AP is a diagonal matrix. Then A = PBP =
(3= pjitbipyy) and

B = Z by % (ijldzj) N (ijldzj)a
l J J

where b; > 0. Therefore if v is an elementary nonnegative form in C p—1n—p—1) then

(n—

1
aNBAy= Zbla/\ §(ijzd2j> A (ijldzj) ANy=>0.m
l J J

Theorem 1.3.2 implies in particular that elementary nonnegative forms are nonnega-
tive.

Lemma 1.3.3. The set of all elementary nonnegative forms in (C(p p) Spans (C(p p) over C.

Proof. We have

. p . .
<%) dzy NdZg = (—1)7)(1"—1)/2%@]-1 AdZg, A= A %dsz A dZ,
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and

1
2
t+1

dz; NdzZy == (dz; + dz) N (dZ; + dZk) + %(dzj +idz) N (dZ; — idZy)

(dzj NdZ; + dz N dZy). w

Let Q be an open set in R™. Continuous linear functionals on D,_,)(f2) are called
currents on ) of degree p or dimension n — p. The set of them will be denoted by DEp) (Q).

For T € D{,,(2) we may write

T = Z /T]dl’], 17 € D/(Q)
[I|=p

where Ty (¢) = T'(pwr) and {w;} is a dual basis to dx; (that is dx; Awp = drpd).

A current T is said to be of order 0 if it can be continuously extended to Cy (,—,)(€2).
This is equivalent to the fact that all coefficients T; are distributions of order 0, that is
complex measures. In this case

T(V) = / TAY, Welmp).
Q
If T is of order 0 and E is a Borel subset of {2 then a total mass of 7" on E is defined by

I1Tle =3 1T I(B),

where || denotes o variation of a complex measure .
A current T is called closed if dT = 0.
The following result is the Stokes theorem for currents.

Theorem 1.3.4. Let ) be a bounded domain in R™ with C' boundary. Assume that T
is a current in Q of order n — 1 which is C* on Q\ U, where U € Q. If moreover dT is of

order 0 then
/ T = / dr.
a0 0

Proof. Take F' € C(ln_l)(ﬁ) such that F' =T in a neighborhood of 9. Then

[ = 1= [ar
Q a0 Q
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by the classical Stokes theorem. Thus we may assume that 7" has a compact support in
Q. Set

/
T ::T*p5:ZTI*p€dx1
I

and take ¢ € C§°(Q2) such that ¢ = 1 in a neighborhood of supp7’. Then dT. — dT
weakly and by the classical Stokes theorem again we have

/ dl' = / pdl =lim | @dI. =1lim [ dI.=0.m
QO Q e—0 Q e—0 Q

Let now  be an open set in C™. Currents of the form

<\ P
T = Z /TJK (%) dz /\de, Tk € D/(Q)

|J|=p
|K|=q
we call complex currents of bidegree (p, ¢) or bidimension (n—p,n—q). We have sz 2 (Q) =

(D(n—p,n—q)(m)/'

Let T € Dgp’p)(ﬂ). Then, similarly as in the case of constant forms, we say that
T is nonnegative and write T > 0 if T' A\ a > 0 for all elementary nonnegative forms «
from (C(n_p’n_p). We say that T is real if T = T (that is Tyx = Ty for all J, K with

[/ = [K] = p).

Theorem 1.3.5. Nonnegative currents are of order 0.

Proof. By Lemma 1.3.3 we may find a basis {o;} of C(n_p n—p) consisting of elementary

nonnegative forms. Let {3;} be a basis in C, , dual to {a;}. Then

/ 7 P
T:ZTJK (§> dZJ/\de:ZTjﬁj,
J,K 7

where Tjd\ =T N a; > 0, that is T} are nonnegative Radon measures. We may write
g (1Y s
B = Z Cri 3 dzy NdzZg, cjr €C.
JK
Then ‘
T =) CoxT;
J
and thus Tk are complex measures. m
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From Proposition 1.3.1 and Theorem 1.3.2 the next two results easily follow by ap-
proximation.

Proposition 1.3.6. If ‘
1
T = ZTjkEdzj N dZ € Dy 1)(9)
j7k:

then T > 0 iff (Tj) > 0. m

Theorem 1.3.7. Let T € D, ) (©2) be nonnegative and F' € C(1,1)(2) be nonnegative

and real. Then TAF > 0. m

Note that T' A F' in Theorem 1.3.7 makes sense by Theorem 1.3.5.
A fundamental Kdhler form is defined by

n .
1 _
w = Zl §dzj Ndz;.
]:

Later on we shall use the following estimate.

Lemma 1.3.8. For every nonnegative current

I 1 p
T = Z Tk <§> dzy NdzZg € ’Dép’p)(ﬂ)
JK

we have
’TJK‘ < Cn TAW"P,

Proof. Let {a;} be a basis of C(n_p n—p) consisting of elementary nonnegative forms and
{wsk} abasisinC,_ . dual to the basis {(i/2)Pdz; Ndzk} in C(, . Write

§ : l
WJK — CrgQy.
l

Then

‘TJK| = ‘T/\CUJK‘ =

<, max |c | T A ay.

2 : [
CJKT/\Oél nlJK
l )

We may write oy = all A---Naf where a{ are nonnegative real (1,1) forms. By Proposition
1.3.1 and the matrix theory we have Ozf < d'w. By Theorem 1.3.7

T/\O‘lSC;;T/\O‘}/\“-/\af_l/\wS--'S(cg)pT/\wp
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and the lemma follows. m

Corollary 1.3.9. Let T' be a nonnegative current of bidegree (p, p) such that T Aw™™P = 0.
Then T =0. =

1.4. Plurisubharmonic functions and regular domains in C"

Let € be an open set in C". A function u :  — [—00, +00) we call plurisubharmonic
if it is upper semicontinuous, not identically —oo on any connected component of {2 and for
every z € 2 and w € C" the function { — u(z+ (w) is subharmonic in a neighborhood of
0 in the complex plane (in other words w is subharmonic on every complex plane cutting
Q). The set of all plurisubharmonic functions on 2 we denote by PSH (2).

Theorem 1.4.1. i) PSH(Q) C SH(Q);

ii) If u e PSH(QY) then ux p. € PSH(Q);

iii) If u; is a decreasing sequence of plurisubharmonic functions on ) to some u then
on every connected component of €} w is either plurisubharmonic or —oo;

iv) If {u;} is a family of plurisubharmonic functions locally uniformly bounded above
then (sup, u;)* is a plurisubharmonic function;

v) Suppose u € D'(Q2). Thenu € PSH(Q) iff the matrix (0*u/dz;0zy) is nonnegative;

vi) If Q1 and €y are domains in C™, T : Q3 — €y is a holomorphic mapping and
u e PSH(Qy) thenuoT € PSH();

vii) If w € PSH(C™) is bounded above then it must be constant;

viii) Assume that u is plurisubharmonic and let x be a convex and increasing function
in the range of u. Then x o u is plurisubharmonic.

Proof. i) Take a ball B € 2. We may assume that B = B,, is the unit ball in C". Use the
parametrization of dB,, defined by e (2, /1 — |2/|2) for t € (0,27] and 2’ € B,,_1. Then,
since u is plurisubharmonic,

/83n u(z)do(z) = /Bnl |2/ |2n 1 /027r w(e (/T [72))dt dA()

> /Bn_1 |2/ |77 /0 w(0)dt dA\(2") = o (0B,)u(0).

ii) Follows easily from the Fubini theorem.

iii), iv) Follow directly from the definition and related properties of subharmonic
functions.

v) By ii) we may assume that u is smooth. Then it is enough to compute

1 82 (z + Cw) - o
ZAC“('Z + (w) = W Z 5’230_ (z 4+ Cw)w;wy.
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vi) We may assume that u is smooth and that n = 1. Then

oT |2

9z

PwoT)  d*u o7
0202  Owow

vii) We may assume that n =1 and supg v = 0. The function

u(1l/z) if 2#0
v(z) = {

limsupu(1/¢) ifz=0
¢—0

is subharmonic and bounded in a punctured neighorhood of the origin. By the maximum
principle v(0) = 0. Moreover, in the unit disk we have v = (sup; v;)*, where v;(z) =
u(z) + 1/jlog|z|. By iii) v is subharmonic in C and vii) follows from the maximum
principle.

viii) Again, we may assume that both u, xy are smooth and n = 1. Then we compute

ou

0z

2
, 0%

82
L 5"

020Zz

— f//

Note that vii) is not true for subharmonic functions in R™, n > 3.
Show that plurisubharmonic functions are in L{ _ for every p < co.

We have the operators

LN /
9:Dpg) = Plprig)

and
7.1 /
0 D(p,q) - D(p,q+1)

so that d = 0 + 0. Set _
d® :=1i(0 — 0).
Then dd® = 2i00. It follows that u is plurisubharmonic iff the (1,1)-current ddu is

nonnegative.
A function is called pluriharmonic in € if it is plurisubharmonic in 2 and harmonic on
every complex plane intersecting 2. The set of all pluriharmonic functions in €2 we denote

by PH(2). Obviously we have PH C H C C*°.

Proposition 1.4.2. For a real smooth function u the following are equivalent
i) u is a pluriharmonic function;
i) 0?u/0z;0z = 0 for all j,k=1,...,n;
iii) Locally we can find a holomorphic function f such that u = Re f.
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Proof. i) implies that for every w € C™ we have szzl %ijk = 0 and ii) follows.
Assume that ii) holds. Then dd‘u = 0 and one can easily check that d°u is a real 1-form.
By the Poincare lemma in every ball there exists a real C'! function v such that du = dv.
It means that d(u + iv) = 0, thus f = u + v gives iii). Obviously i) follows from iii). m

A plurisubharmonic function u said to be strongly plurisubharmonic in §Q if for every
open U € 2 there exists A > 0 such that the function u(z) — A|z|? is plurisubharmonic in
U (that is dd“u > 4\ w).

Assume that u,v are plurisubharmonic and negative. Show that the function

—(uv)/? is plurisubharmonic and that it is strongly plurisubharmonic if so is u.

We want to use the Perron method for plurisubharmonic functions. If €2 is a bounded
domain in C™ and f € L*>°(01?), the function

(1.4.1) u=1usq:=sup{v € PSH() : v*|pq < f}.

is called a Perron-Bremermann envelope of f in (). However, contrary to the real case,
uyr.o need not be even upper semicontinuous in general, as the following example shows.

Let © = A? be a bidisk and

o) = { -1 ifz=0

0 otherwise.

Show that uys ., a> = f in A%

It means that there can be no counterpart of Theorem 1.2.7 in the complex case.
Instead, our main tool will be the following result due to Walsh [Wal].

Theorem 1.4.3. Assume that € is a bounded domain and f € C(0f) is such that
u* = u, = f on 0N, where u = uy . Then u is continuous in §2.

Proof. We have u = u* € PSH(f2), hence it is enough to show that u is lower semicon-
tinuous. Fix z5 € Q and € > 0. Since 05 is compact, we can find § > 0 such that

(1.4.2) 2€Q, wed, |z—wl <§ = |u(z) — f(w)| <e.
Take z € Q with |z — 29| < /2 and define
) max{u(z),u(z + 20— 2) — 2} ifzeQnQ,
v(z) == -
u(z) if z € O\ Q,
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where Q = Q—(20—2). By (1.4.2) v = u in a neighborhood of QNAQ and thus v € PSH ().
Moreover, if z € QN Q and w € Q are such that |z — w| < §/2 then |z + 20 — 2 —w| < &
and from (1.4.2) again it follows that u(z + zp — 2) — 2¢ < f(w) — e < u(z). Therefore
v(z) < wu(z) if dist (z,0) < §/2 and thus v < u. We obtain u(2) > v(2) > u(zg) — 2¢ and
it follows that u is lower semicontinuous. m

Proposition 1.4.4. Assume that ) € C" is a regular domain (as a domain in R*") and
f € C(09Q). Then u} gloa < f and uyq is plurisubharmonic in Q. If f; € C(99) are such
that f; | f then uy, o | usq. If f satisfies

(1.4.3) Jv e PSH(Q) NC(Q) such that v|sq = f

then ur o € PSH(Q) N C ().

Proof. We can find h € H(2) N C(Q2) such that h = f on 0. It follows that usq < h
and thus u}79|39 < fand uyo € PSH(2). The sequence uy, o is decreasing to some
u € PSH(Q) such that u > uyo. But u*|pq < f and thus u = uy . The last part of the
proposition follows from Theorem 1.4.3. m

If O € C™ fulfills (1.4.3) for every f € C'(9N2) then it is called B-regular. The following
characterization of B-regular domains is due to Sibony [Sib].

Theorem 1.4.5. For a bounded domain €) in C™ the following are equivalent
i) Every boundary point of Q) admits a strong plurisubharmonic barrier;
ii) Q is B-regular;
iii) There exists a continuous plurisubharmonic function 1) in € such that Zlirgﬂ P(z) =

0 and the function v(z) — |z|? is plurisubharmonic (i.e. v is “uniformly” strongly pluri-
subharmonic in §2).

Proof. Observe that every condition implies that € is regular. Of course i) follows from ii).
To prove i)=-ii) assume that € is B-regular and let f € C(02). Set u := us . By Theorem
1.4.3 it is enough to show that u* = u, = f on 9. By Proposition 1.4.4 u*|sq < f. Fix
zo € 9Q and € > 0. By i) there is v € PSH(R) such that v*|g, ,, , <0 and lim v(z) = 0.

z—20
Then f(z9) + Av* —e < f on 99 for A big enough, thus f(z9) + Av —e < win Q. In
particular u.(zo9) > f(20) — € and ii) follows.

If © is B-regular then we can find u € PSH(2) N C(2) such that u(z) = —|z|? for
z € 9. Then the function 1(2) = u(z)+|z|* gives iii). Assume therefore that iii) holds and
it remains to show that Q is B-regular. Take f € C'(99) and set u := us . By Theorem
1.4.3 and Proposition 1.4.4 it is enough to show that u.|spq > f. For every e > 0 we can
find a smooth g in a neighborhood of Q such that f < g < f +¢ on 05. For A big enough
g+ Ay € PSH(Q) and thus g + Ay — e < u which implies that us|lgo >g—e> f—c. m
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A domain §2 in C™ is called hyperconvex if there exists a negative plurisubharmonic
exhaustion function in €, that is u € PSH(2), u < 0 in € such that for every ¢ < 0 we
have {u < ¢} € Q. If Q is bounded then hyperconvexity can be characterized as follows.

Theorem 1.4.6. For a bounded domain §2 in C™ the following are equivalent
i) Every boundary point of Q admits a (global) weak plurisubharmonic barrier.
ii) There exists a continuous strongly plurisubharmonic exhaustion function in §2.

Proof. Obviously ii) implies 1). Assume therefore that i) holds and let K & 2 be a closed
euclidean ball (or any other compact subset of €2 such that Q \ K is regular in the real
sense). Set

u:=sup{v e PSH(Q) :v <0,v|g < —1}.

We have lim,_, 5o u(z) = 0 and from Theorem 1.4.3 applied to the domain 2\ K it follows
that u is continuous. Put 9(z) := —((|z|?> — M)u(2))'/?, where M > 0 is such that
2|2 — M < 0 for z € Q. Then 1 is strongly plurisubharmonic in 2. m

Polydisks in C™, n > 2, are hyperconvex but not B-regular.

So, contrary to the real case (Theorem 1.2.8), there is no equivalence between the
existence of weak and strong plurisubharmonic barriers.
Q) is called pseudoconvex if there exists » € PSH () such that lirgg ¥(z) = oo. It can
z—

be shown that 2 is pseudoconvex iff the function — log dist (z,01?) is plurisubharmonic in
) and the famous result obtained independently by Oka, Bremermann and Norguet states
that this is equivalent to the fact that €2 is a domain of holomorphy (see e.g. [Horl]). If
n = 1 then all domains are pseudoconvex.

Q= {(z,w) € C?:0 < |z| < |w| <1} is called a Hartogs triangle. Show that
is a regular pseudoconvex but not hyperconvex domain.

The next result says that hyperconvexity is a local property of a boundary. It is due to
Kerzman and Rosay [KR] and the proof we present is taken from [Deml]. An analoguous
result for B-regular domains is obvious (since local strong barriers immediately give global
strong barriers) and for pseudoconvex domains it can be found for example in [Horl].

Theorem 1.4.7. Suppose that §2 is bounded domain in C" such that for every zy € 0S)
there exists a neighborhood U of zy such that QNU is hyperconvex. Then €} is hyperconvex.

Proof. There are domains Uy, ..., U, such that 0Q C J ; Uj and 2 N U; are hypercon-
vex. Let u; be negative plurisubharmonic continuous functions in €2 N U; and such that
lim, a0 u;(2) = 0. Choose domains U; € Uj such that 9 C U]. Uj. By Lemma A2.4 there
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is a convex, increasing function y : (—o00,0) — (0,400) such that lim; ,o- x(¢) = +o0
and [y ou; — xouk| <1on U;NU,NQ. (To use Lemma A2.4 we set

f(t) :=max{u;(z) : z € @ﬂ Q, j=1,...,p, dist(z,00Q) > —¢},
g(t) == min{u;(2): z € ﬁj’-ﬂ Q, j=1,...,p, dist(z,00) < —¢}.)

From the convexity of x it follows that
IX(uj(2) =€) = x(un(z) —€)| <1, >0, z€ U;NU, N

Let U € U} be such that Q\ V C U; U} for some V' € Q and take smooth ¢; with

supp ¢; C UJ{, 0 < ¢; <1and ¢; =1 in a neighborhood of U_j” Moreover there are
constants M, X such that |z|? — M < 0in  and ¢; + A(|z|> — M) is plurisubharmonic for

every j. Set
vje(2) == x(u(z) —e) + pj(2) =1+ )\(|z\2 — M).

We have v; . < vg ¢ in a neighborhood of U} N U N Q, thus v(z) := max{v; (), x(a) —
1+ X(|2|> = M)} is plurisubharmonic in 2, where a is such that supyqy, u; < a < 0
and ¢ is small enough. Then w. := v./x(—¢) — 1is < 0, > —AM/x(—¢) on 90 and
< (x(a@) = 1)/x(—¢) =1 on V\ U, Uj. It follows that the function u defined in the proof
of Theorem 1.4.8 satisfies lim,_,gqu(z) =0. m

A domain © in C" is called balanced if z € Q, A € C, |A| < 1 implies Az € Q. The
function
fa(z) =inf{t >0:t7'2c Q)

is called a Minkowski functional of €). Since ) is open, one can show that fqo is upper
semicontinuous in C™ and Q = {fo < 1}. The following result is due to Siciak [Sic4].

Theorem 1.4.8. For a balanced domain €2 in C™ the following are equivalent

i) Q is pseudoconvex;

ii) log fo € PSH(C™);

iii)  is convex with respect to homogeneous polynomials, that is, if K C ) is compact
then the compact set

KH = {z € C":|Q(2)| <||Q||k, for all homogeneous polynomials @ in C"}

is contained in €.

Proof. If iii) holds then €2 is in particular holomorphically convex, thus it is a domain of
holomorphy and pseudoconvex. Obviously ii) implies that Q = {log fo < 0} is pseudocon-
vex. Assume therefore that €2 is a domain of holomorphy and it is enough to show that
ii) and iii) hold. There exists a holomorphic function F' in 2 which cannot be continued
holomorphically beyond (2. Since 2 is balanced, expanding F' in the Taylor series about

31



the origin gives F' = Z?‘;O Q;, where (; are homogeneous polynomials of degree j and the

series ) (); converges pointwise in Q. Set 1 := limsup \Qj|1/ J. By the Cauchy criterion

J—00
we have Q C {¢p < 1}.
We claim that the sequence \lel/ J is locally uniformly bounded above. Indeed, for
m > 1 the sets E, :=[1;{|Q;| < m} are closed, increasing and 2 C |, Ern,. By the Baire
theorem for some m the set E,, has nonempty interior. Thus |Q;| < m in B(zp,r). If
z € B(0,7) then for A € C, |A| =1 we have

1Q; (20 + A2)| = |Qj(Az0 + 2)| < m,

since (); are homogeneous. From the maximum principle for holomorphic functions of one
variable we deduce that the last inequality is valid also for A = 0 and therefore |Q;| < m
in B(0,7). It follows that |Q;(2)|'/7 < m!/7|z|/r for every z € C", which proves the claim.

It is easy to show that the series ) @Q; is locally uniformly convergent, and thus is a
holomorphic function in {¢* < 1}. Since F is not extendable beyond (2, it follows that
{v* <1} € Q C {¢ < 1}. From the fact that 1 is homogeneous of degree 1 one can
deduce that int{y) < 1} = {¢p* < 1}, hence Q = {¢* < 1} and ¥* = fqo. The functions
up = (Sup;>g %log|Qj\)* are plurisubharmonic in C™ and uy | log fo as k T oo, which
gives ii).

To show iii) let K C € be compact. There is a such that maxg ¢¥* < a < 1. We
have maxy e* | maxy ¥* as k T oo, thus there is jo such that for every 7 > jo we have
1Q;|*/7 < aon K. Then

K ¢ Ml <l1Qlix}r ¢ {11V <a}c{y <a}cQ

Jj2Jjo J=2Jo

and iii) follows. m

A function u € PSH(Q) is called mazimal if for every v € PSH(Q2) such that v < wu
outside a compact subset of {2 we have v < u in . If n = 1 then maximal means precisely
harmonic. If n > 2 then it is easy to show that for example plurisubharmonic functions
independent of one variable are maximal.

i) The function log |z| is maximal in C™ \ {0} but not in C™.

ii) Let F' be a holomorphic function on an open subset of C", n > 2. Then for o > 0
the functions |F|* and log |F| are maximal. This is false if n = 1.

Proposition 1.4.9. i) A decreasing sequence of maximal plurisubharmonic functions
converges either to a maximal function or to —oo;

ii) If u is maximal in an open €2 then for every G € {2 there is a sequence of continuous
maximal plurisubharmonic functions in G decreasing to .

Proof. i) Follows directly from the definition.
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ii) We may assume that G is smooth, in particular regular. Let v; be a sequence
of continuous plurisubharmonic functions in a neighborhood of G decreasing to u. Set
Uj 1= Uy, |,e,c- Then u; is a decreasing sequence of continuous functions on G, maximal
in G. From i) it easily follows that u; | u. m

The following counterpart of Corollary 1.2.4 can be easily obtained from Proposition
1.4.4.

Proposition 1.4.10. Assume that u is plurisubharmonic in Q) and let G € €) be a regular
domain. Then there isuw € PSH () such that © > u, u=wu on Q\ G and u is maximal in
G. If uj | u then u; | w. If u is continuous then so is u. m
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I1. The complex Monge-Ampere operator

2.1. The definition and basic properties
We start with a formula which is useful when one integrates by parts.

Proposition 2.1.1. If ¥ € C'(O;’p) and T € qu 2 with p+q =mn — 1 then

UAddT —dd°U AT =d (U AT — d°UAT).

Proof. We have
d(WANdT—dUVAT)=dV NdT +V ANdd°T — dd°V NT + d°V A dT
and, since p+qg+1=n,

AU NdT =i (0VANIT — OV ANIT) = —d“U AdT. m

/

(q’q)(Q), Q open in C™, we have

By Proposition 2.1.1 for every current 7' € D
(2.1.1) dd°T(V) = T(dd°¥), Ve (?,o(n—q—l,n—q—l)(ﬂ)‘

Let T be a nonnegative closed current of bidegree (g, ¢) and u a locally bounded pluri-
subharmonic function on 2. By Theorem 1.3.5 the coefficients of T" are complex measures
and thus uT is a well defined current. We define

ddu AT = dd°(uT).

By (2.1.1)

(2.1.2) /ddcu/\T/\\Il:/uT/\ddc\I/, ey (Q).
Q

Ov(n_q_]wn_q_l)
Q

Proposition 2.1.2. dd°u A T is a nonnegative closed current of bidegree (¢ + 1,q + 1).
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Proof. Tt is enough to show the nonnegativity. If |u| < M then |u.| < M, where
us = u * pe. By the Lebesgue bounded convergence theorem u.T — uT weakly, hence
dd®(ueT) — dd®(uT) weakly. Since u. is smooth, we have dd®(u.T) = dd°u. AT in the
usual sense and dd“u. AT > 0 by Theorem 1.3.6. m

Therefore we may define inductively a nonnegative closed current

dduy A+ Ndduy NT € D)y oy

for uy,...,up € PSHNLY and T € qu 2 with 7" > 0, dT' =0, p+ ¢ < n. In particular,

we may take T' = dd“v, where v is an arbitrary plurisubharmonic function.

Proposition 2.1.3. Let Q2 be a bounded domain in C" and let u,v € PSH N L2 ()

loc

be such that u,v < 0, lim,_pqu(z) = 0 and [,ddv AT < oo. Assume that T €

Dznil’nfl)(ﬁ) is nonnegative and closed. Then

/vddcu/\Tg/uddcv/\T.
Q Q

In particular, if in addition lim,_pqv(z) = 0 and [, dduNT < oo,

/vddcu/\T:/uddcv/\T.
Q Q

Proof. For ¢ > 0 set u. := max{u, —e}. Then by the Lebesgue monotone convergence
theorem

/ uddv AT =lim [ (u—u;)ddvAT
Q

e—0 Jq
and
/(u—ug)ddcv/\T: lim [ (u—wue)*py/;ddvAT.
Q

j— Jo

Let ' € Q2 be such that {u —u. # 0} € Q' € Q. From (2.1.2) for j big enough we infer

/

/(u—us)*pl/jddcv/\T:/vddc((u—ua)*pl/j)ATz/ vdd®(u* pry;) NT
Q Q

and the proposition follows from Lemma A2.1. m
The next estimate is called the Chern-Levine-Nirenberg inequality [CLN].

Theorem 2.1.4. If K € ) then

|ldd®uy A\ -+ ANdd®up ATk < CrollurllLes (@) - [[upl[=@|Tllo
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for uy,...,u, € PSH N L>®() andTGDEq’q)(Q) withT >0, dT" =0, p+ q < n.

Proof. We may assume that p = 1. Take ¢ € C3°(2) such that ¢ > 0 and ¢ =1 on K.
IfpecC is as in Lemma 1.3.8 then

(n—q—1,n—q-1)
|| dd°u A T||x < C"/ ddcu/\T/\ﬁgC’/ pdd°u AT A B.
K Q

By (2.1.2) and since dd®(¢f) = dd°p A 3,

/gpddcu/\T/\ﬁ:/uT/\ddcgo/\ﬁgC’”HuHLoo(Q)HTHQ.I
Q Q

Assume that v € PSH(2) and K € €. Show that

||dd“v||k < Ck allv]lL(q)-

The following approximation theorem is due to Bedford and Taylor [BT2].

Theorem 2.1.5. Let u%,u{, e ,ug; e PSHNLE,0<p<n,j=1,2,..., be sequences
decreasing to ug, . ..,u, € PSH N L}, respectively. Let T' be a closed nonnegative current

of bidegree (q,q), p+ q <n. Then
wdddul A -+ Addoul, AT — ugddus A -+ Addu, AT

weakly.

Proof. Suppose that ui and T are defined in a neighborhood of B, where B = B(z,r). We
may assume that for some positive constant M we have —M < ui < —1 in a neighborhood
of B. Tf we take B’ € B and 1(z) := |2 —2o|?—r2 then for A big enough max{ul, Ay} = uJ,
on B’ and max{ui, At} = Av) in a constant neighborhood of 9B. We may therefore assume

that u] = uy = At in a neighborhood of 9B.
The further proof is by induction with respect to p. The theorem is obviously true if
p = 0. Let p > 1 and assume the theorem holds for p — 1. It follows that

ST = ddu] A+ Nddul NT — ddug A -+ AddCu, NT =: S
weakly. By the Chern-Levine-Nirenberg inequality (Theorem 2.1.4) the sequence S7 s
relatively compact in the weak* topology. It therefore remains to show that if u}S7 — ©

weakly then © = ugS.
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By Lemma A2.2 we have © A a < ugS A «a for every elementary nonnegative o of
bidegree (n —p—q,n —p—q), hence upS —© > 0. By Corollary 1.3.9 it is enough to show
that [ (upS —©) Aw™ P77 < 0. By Proposition 2.1.3

/ uodduy A--- ANddup, NT Nw" P71 < / ugddcul A ANddfup NT ANw™ P71
B B
= / wyddu) A ddCus A -+ - A ddu, AT A W™ P74
B
<...< / u%ddcu{ /\---/\ddcui/\T/\w”_p_q
B

and the theorem follows from Lemma A2.1. m

Remark. The above theorem is much easier to prove if all considered functions are contin-
uous. For then the convergence u) — ug, k=0,...,p, is uniform and we may write

u)S? —upS = (ud —u)S? + up(S7 — S).

It is easy to show that both terms tend weakly to 0.

From Theorem 2.1.5 it follows in particular that for every nonnegative closed current
T e qu q)(Q) the mapping

(PSH NLE() 3 (uy, ..., up) — dduy A -+~ Add“u, AT € Dgp+q7p+q)(9)

is symmetric.
One can easily compute that

(2.1.3) (ddu)"™ = n!4™ det Ou_\ g
- - 0z, 0%,

if u € C?. We have defined the left hand-side of (2.1.3) if u € PSHN L. The right hand-

side of (2.1.3) is a nonnegative Radon measure if u € PSH N W?%" (that is D%u € L, if
o] = 2).

Proposition 2.1.6. (2.1.3) holds ifu is a W?™ locally bounded plurisubharmonic function.

Proof. By Theorem 2.1.5 it is enough to show that if u. = u * p. then

02 0?
det ui — det u_
8Zjaz k 82382 k
weakly. In fact, it is easy to see that we even have convergence in Li. _ using the following
fact which is a consequence of the Hélder inequality: if f* — f*in L2  k =1,...,n,

loc»
then fl...fr — fl...f"inLl . =

loc*
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(dd®)™ is called the complex Monge-Ampére operator and we have defined it for locally
bounded plurisubharmonic functions. The following exercise shows that a good definition
of (dd°u)™ as a nonnegative Borel measure for an arbitrary plurisubharmonic function u
is not possible.

For a € (0,1) set
u(z) = (=logla])® |z + -+ + |za]* = 1).

Compute the following

d*u a(—log |z ])"e~2 2 2
— 1—aq— ez,
det (azjazk (z)) TR )

if 27 # 0. Conclude that u is plurisubharmonic on the set
{|Zl| <1, |22|2 +--+ |Zn|2 <1-— a}.

Show that if a > 1/n then

0%u
/ det (3Zj3§k) d\ = oo.

B(0,6)\{z1=0}

The above example is due to Kiselman [Kis]. The first example of this kind has been
constructed by Shiffman and Taylor (see [Siu]).

Show that (dd®log™ |z|)™ = (27)"do/o(DB), where do is the surface measure

of the unit sphere.

The following estimate is essentially due to Cegrell [Ceg, Proposition 6.2] (see also
[Dem?2, Theorem 1.8]).

Theorem 2.1.7. If K € Q) then for every v € PSH () and uy,...,u, € PSH N L>*(Q),
p < n we have

Hvddcul VANEERIVAN ddcupHK < CK7Q‘"UHLI(Q)HU,:{HLOO(Q) e ||upHLoo(Q)
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Proof. Similarly as before we may reduce the problem to the following situation: 2 = B
is the unit ball, v < 0, ¥ < ur < 0on B and u; = v in a neighborhood of 0B, k =1,...,p.

IftTe DEn—l n—l)(Q) is nonnegative and closed then

—/vddcuk/\T:—/vddchT—/vddC(uk—w)/\T
B B

B

:-/ vddeT—/(uk—w)ddcukAT
B

B

< - / vddP NT.
B
This implies that

—/ vdduy A ANddu, ANw" TP < —/ v(ddP)P Nw" TP = —C/ vd
K B B

and the theorem follows from Lemma 1.3.8. =

Show that if f is C* then df A d€f > 0 but (df A d°f)2 =0

Theorem 2.1.8. Let ) be a bounded domain in C". Assume that uy,...,U,,v,w €
PSH N L*(Q) are such that uy,...,u, <0, v <w and lim,_,gq(w(z) —v(z)) = 0. Then

/ (w—v)"dd°us A\ - - - A dduy,
(2.1.4) @
<tz - lun-all ey [ Junl(d0)"

and, for every p > n,

/(w—v)pddcul/\~~~/\ddcun

(2.1.5) 7%

Sp(p—1)...(p—n—|—1)||u1||Loo(Q)...||un||Loo(Q)/(w—v)p"(ddcv)".
Q

Proof. For ¢ > 0 set w. = max{v,w — ¢}, then w. T w as e | 0 and w. = v in a
neighborhood of 9€). By the Lebesgue monotone convergence theorem we may therefore
assume that w = v in a neighborhood of 9. Set v; := v * p;/; and w; := w * py/;. By
Theorem 2.1.5

|un|(ddv;)"™ — |un|(dd v)"

weakly, and
(2.1.6) (wj —v;)P7"(ddv;)" — (w — )P~ " (ddv)",
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provided that p = n + 1. Right now, when proving (2.1.5), we shall restrict ourselves
only to this case and postpone the general one to Section 2.2, after we have shown that
plurisubharmonic functions are quasi-continuous. In the proof of quasi-continuity we will
use (2.1.5) only for p=n + 1.

We may therefore reduce the proof to the case when w, v are smooth and equal near

0N2. For a nonnegative closed T € DEn—l n—l)(Q) we then have

/(w —v)Pddu; NT = / urdd®(w —v)P A T.
Q Q

Since

—dd“(w — v)P = —p(p — 1)(w — v)P"2d(w — v) A d°(w — v) — p(w — v)P~1dd(w — v)
< p(w —v)P~tddv,

we obtain

/ (w—v)Pddus NT < p/ |ut |(w — v)P~ddv AT < p||ug]|p= (o) / (w— )P~ ddv A T.
Q Q Q

Iteration of this easily gives (2.1.4) and (2.1.5) (provided that (2.1.6) holds). m

The first part of Theorem 2.1.8 was proved in [Blol].

Let u,v be plurisubharmonic and locally bounded. For a nonnegative closed current
T of bidegree (n — 1,n — 1) we want to define du A d°v A T. If u,v are smooth then
du NdvANT = dv ANd°u AT (because they are of full degree), hence by polarization we
may assume that v = v and v > 0. Then we set

1
duNduNT = iddcu2 AT —uddu NT

so that it agrees with the smooth case. In particular, du A d°v AT is a complex measure.
Directly from this definition and Theorem 2.1.5 we obtain the following approximation
result:

Theorem 2.1.9. Let u;,v; and wi, k=1,...,p, be sequences of locally bounded pluri-
subharmonic functions decreasing to u,v,w, € PSH N Ly;. respectively. Then, if T' is a
nonnegative closed current of bidegree (n—p—1,n—p—1), we have the weak convergence

of measures

du; A dv; A ddw] A - A ddw) — du A d°v AddCwy A -+ A ddw,.
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The next two theorems were proved in [Blo2]:

Theorem 2.1.10. Assume that u,v € PSH N LS, and 2 < p <n. Then

(dd® max{u,v})?

p—1 p—1
= dd° max{u, v} A Y_(ddu)* A (ddv)P~ R =Y " (ddu)* A (dd°v)PF.
k=0 k=1

Proof. We may assume that u,v are smooth. A simple inductive argument reduces the
proof to the case p = 2. Set w := max{u,v} and, for ¢ > 0, w. := max{u + ¢,v}. In
an open set {u + ¢ > v} we have w. — u = ¢, whereas w — v = 0 in {u < v}. Therefore
dd®(we — u) A dd°(w —v) = 0 for every ¢ > 0 and taking the limit we conclude that
dd(w —u) ANdd°(w —v) =0. =

Theorem 2.1.11. Assume that up, k = 1,2, is a nonnegative plurisubharmonic function
in a domain 2, C C"*, such that

/ (ddcuk)nk = 0, k= 1, 2.
{ur>0}

Then, treating ui,us as functions on €27 X {9, we have

(dd® max{uy,us})™ " = (dduy)™ A (ddug)™.

Proof. Set w := max{uj,us} and o := u; — uy. Since (dduy)™ ™ =0, k = 1,2, and by
Theorem 2.1.10 we have

(dd°w)™ ™72 = ddwA [(dd®ur)™ 1 A (dd®ug)™ + (dd®ur)™ A (dduz)™ ]

(2.1.7)
— (dduqp)™ A (ddug)™?.

Let x : R — [0, +00) be smooth and such that x(z) =0if 2 < -1, x(z) =z if > 1 and
0<x' <1, x” >0 everywhere. Define

T .
¥y = Uz + jx(Joz)-
We can easily check that 1; | w as j T co. An easy computation gives
dd®(x(jo) /) = X' (ja)dd o + jX" (jo)da A da.

Therefore
dd®v; = X' (ja)ddui + (1 — X' (ja))ddus + jx" (ja)da A da
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and, in particular, v; is plurisubharmonic.
Using the hypothesis on u;, us we may compute

ddep; A (dduy)™ 1 A (ddCug)™
= [X'(0)(ddur)™ + jx" (jur)dus A duy A (ddur)™ ] A (ddusg)™
= dd°(x(ju1)/7) A (ddur)™ 1 A (ddug)™

Since x(ju1)/j | u1 as j T oo, it follows that

ddw A (ddup)™ 1 A (ddug)™ = (ddui)™ A (ddus)™
and, similarly,

dd°w A (ddur)™ A (ddug)™ ™! = (dduy)™ A (dd“us)™

This, together with (2.1.7), finishes the proof. m

2.2. Quasi-continuity of plurisubharmonic functions and applications

If ©2 is open in C™ and F is a Borel subset of €2, we define
c¢(F) = c(E,Q) :=sup {/ (dd°uw)" :u e PSH(Q),—1 <u < 0} )
E

c is called a relative Monge-Ampére capacity. As well as almost all results of this section
it comes from [BT2]. By the Chern-Levine-Nirenberg inequality c(E, ) is finite if £ € Q.

Proposition 2.2.1. i) If Q C B(2o, R) then c¢(E,Q) > 4"n!R™*"\(E);
ﬁ) If By C E5 C Q1 C )y then C(El, Qg) < C(EQ,Ql);
iii) C(U;il Ej) < Zjil co(Ej);
iv) If ECw&Qq CQy €C" then c(E, Q) < Cy.0,,0,¢(E,Q2);
v) If E; 1 E then lim;_,o ¢(E;) = c¢(E).

Proof. i) It is enough to take u(z) = |2 — z|?/R? — 1.

ii) is clear.
iii) We may write

| JE;) —SupZ/ (dd°u) <Zsup/ (dd°u) :zj:c

iv) If we cover w by finite number of balls contained in €; then using ii) and iii) we
may reduce the problem to the case when w = B(zg,r) and 2y = B(z¢, R1) are concentric
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balls. Take u € PSH (1) such that —1 < u < 0. If (2) = (R? —r?)71(|z — 2|* — R?)
then ¢ = 0 on 0 and ¥ < —1 on w. Set

{ max{u,®} on y,
U=
) on Q9 \ O

and v = (a + 1)"Y(u — a), where a = ||¢)||q,- Then v € PSH(s), -1 < v < 0 and

(dd°v)™ = (a + 1)7"(ddu)™ on w, hence ¢(F,Q1) < (a+ 1)""c(Es,Q2).
v) We may write

lim ¢(E;) = sup/E (dd°u)" =c¢(F). m

j—>OO j)u J

The following result shows that plurisubharmonic functions are quasi-continuous with
respect to c.

Theorem 2.2.2. Let v be a plurisubharmonic function on an open subset ) of C™. Then
for every € > 0 there exists an open subset G of § such that ¢(G, ) < € and v is continuous

on 1\ G.
For the proof of Theorem 2.2.2 we need two propositions.
Proposition 2.2.3. If v e PSH(Q)) and K € () then

lim ¢(K N{v < —j},Q)=0.

Jj—0o0

Proof. Take u € PSH(Q2) with —1 < u < 0 and an open w such that K € w € . By
Theorem 2.1.7

c,\n 1 c,\n CK,UJ
/ (dd°u) S;/”UKdd u)" < ; V]| L1 (). =

Kn{v<—j} K

Proposition 2.2.4. Let v; € PSH N LS (2) be a sequence decreasing tov € PSH N

loc
L (). Then for every K € Q and 6 > 0

lim ¢(K N{v; >v+6},0Q)=0.

Jj—oo
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Proof. We may easily reduce it to the case when () is a ball. Using Proposition 2.2.1.iv
and similarly as in the proof of Theorem 2.1.5 we may also assume that v; = v = Ay in a
neighborhood of OB, where B = B(zp, R) = Q and ¢(z) = |z—2|? — R?. Let u € PSH(B)
be such that —1 < u < 0. Then by Theorem 2.1.8 (with p =n + 1)

[ e < i [ - oo < g [ - o

Kn{v;>v+4d} B B

and the last term tends to 0 by the Lebesgue monotone convergence theorem. m

Proof of Theorem 2.2.2. Take w € ). We claim that it is enough to show that there
exists an open G C w such that ¢(G,) < € and v is continuous on w \ G. Indeed, we
may then take w; € Q with w; 1 Q and open G; C w; such that ¢(G;,Q) < 277¢ and v is
continuous on w; \ G;. Setting G = |JG; we obtain ¢(G) < ¢ and for every open U € Q
we have U \ G C w; \ G; for some j, thus v is continuous on Q2 \ G.

Let G; = wn{v < —j}, where j is such that ¢(G1,9Q) < /2 (by Proposition 2.2.3).
Set v = max{v, —j} and let vy be a sequence of continuous plurisubharmonic functions
defined in a neighborhood of @ decreasing to v. By Proposition 2.2.4 for every j = 2,3, ...
we can find k(j) such that for G; = w N {vgy) > v + 8} we have ¢(G;,Q) < 277e. If
G = JGj then ¢(G,2) < ¢ and on w \ G we have uniform convergence vy;) — 0 = v. m

In what follows we shall derive several useful applications of the quasi-continuity of
plurisubharmonic functions. The first one is a generalization of Theorem 2.1.5 to sequences
of locally bounded plurisubharmonic functions increasing to a plurisubharmonic function
almost everywhere (with respect to the Lebesgue measure). As well as almost all results of
this chapter it is due to Bedford and Taylor [BT2]. It was Cegrell [Ceg] who observed that
it can be proved without using the solution of the Dirichlet problem and that a complicated
inductive procedure on the dimension from [BT2| can be avoided.

Theorem 2.2.5. Let ug,u{,...,ui{) e PSHNLX,0<p<n,j=1,2,..., be monotone

loc>
sequences (either decreasing or increasing) converging almost everywhere to uo, ..., u, €

PSH N L, respectively. Then
whddu] A -+ A ddoul, — ugdd®uy A -+ A dduy,
weakly.

Proof. We will modify the proof of Theorem 2.1.5. In the same way as there we may
reduce the problem to the situation where all considered functions are defined in a ball
B = B(zg,r), > A in B and equal to Ay in a neighborhood of 0B, where A > 0 and
Y(2) = |z — 2|2 — r%. The proof is by induction in p. Of course the theorem holds if p = 0.
Let therefore p > 1 and assume the theorem is true for p — 1. It means in particular that

S7 = ddu] A+ A ddu) — dduy A - A ddCuy, =: S
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weakly. By the Chern-Levine-Nirenberg inequality it is enough to show that if ugSj — 0
weakly then © = uyS. If u% is decreasing then Lemma A2.2 implies that © < ugS. If
ug) is increasing then u%Sj < upS; and again by Lemma A2.2 every weak limit of u(S7 is
< upS. Thus also in this case we have © < upS. By Corollary 1.3.9 it therefore remains
to show that [,(© —upS) Aw"™ P >0, that is that

(2.2.1) lim [ u)S? /\w"_pZ/uOS/\w”_p.
j— /B B

Using quasi-continuity of plurisubharmonic functions we will show that for every bounded
plurisubharmonic function u in B which is equal to A in a neighborhood of 0B we have

(2.2.2) lim [ uS? Aw™ P :/ uS Aw"P.
B B

J—00

First we show how (2.2.2) implies (2.2.1). If u? is decreasing then u) > up and (2.2.1)

follows directly from (2.2.2) applied to ug. Assume that u} is increasing. Then for every
k by (2.2.2) and Proposition 2.1.3 we have

lim [ w)S9 Aw™? > lim [ ubSI AW
j—oo /B j—oo /B

:/ulgS/\w”_p
B

= / uyddul A ddug A - -+ A ddCuy, A W™ P
B

If we now let k tend to co and use (2.2.2) again, we get (2.2.1).

Hence, it remains to prove (2.2.2). By Theorem 2.2.2 for every ¢ > 0 we can find an
open G € B such that u is continuous on F := B\ G and ¢(G, B) < . For simplicity we
denote pj = S7 Aw™ P and p =S Aw"P. Write

/B(uduj—udu)z/GJr/F-

We have p; < (ddc(u{ et u]@ + (n—p)Y))" and

/(ud,uj —udu)‘ < Che
G

where C] is a constant independent of j and e. Let ¢ be a continuous function in B such
that ¢ =u on F and —A < ¢ <0 in B. Then, since u = ¢ = 0 on 0B,

—/uduz—/soduz lim (—/@dw) =— lim [ wudy;.
F F J—00 F j—ooo JF
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On the other hand

—/udué—/soduz—.lim/wduj
F B J—7JB

and
_/SOde:—/—/ S—/uduj+025.
B F G F
We infer
i | [ (was; -~ wan)| < (G + Ca)e
J— | JB

and (2.2.2) follows since € was arbitrary. m
We can also finish the proof of Theorem 2.1.8:

End of proof of Theorem 2.1.8. We have to show that (2.1.6) holds for arbitrary
p > n. It is no loss of generality to assume that —1 < v,w < 0. Let Q' be open and such
that {v < w} C Q' € Q and let € > 0. By Theorem 2.2.2 we can find an open G C
with ¢(G, ) < e such that v, w are continuous on F' = Q\ G. Set f; := (w; — v;)P7",
fi=(w—0v)P"", pu; = (ddv;)", p:= (dd°v)", G’ == GNQ and F' := FNQ. We have

[ s = rau) = | (s = ran)+ [

Since f; and f have compact supports in ', in the same way as in the proof of Theorem
2.2.5 we can show that the first and the third terms tend to 0, whereas on F’ f; — f
uniformly and thus so does the second term. m

’

(f5 = fdu; + . f(duj — du).

The next application is the domination principle.

Theorem 2.2.6. Assume that ) is a bounded domain in C". Let u,v € PSH N L>(£2)
be such that (u — v), > 0 on 2. Then

/ (ddv)" < / (dd°u)",

{u<v} {u<v}

Proof. If instead of u we consider u + 6, § > 0, then {u+d < v} T {u <wv} asd | 0 and
it follows that we may assume that (u —v), > 0 > 0 on 9. Then {u < v} € Q.

First we assume that v and v are continuous. Then Q' := {u < v} is open, u,v are
continuous on €’ and u = v on 9. For £ > 0 set u. := max{u+¢,v}. Then u. | v on €
as € | 0 and u. = u + ¢ in a neighborhood of 9. By the Stokes theorem

/ (dd°u.)" = / (dd°u)"

{u<v} {u<v}
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and by Theorem 2.1.5
[ @y <im [ @
{u<v} {u<v}

hence the theorem follows if u and v are continuous.

Let now u and v be arbitrary and let w be a domain such that {u < v+§/2} € w € Q.
There are sequences u; and vy of smooth plurisubharmonic functions in a neighborhood of
w decreasing to u and v respectively and such that u; > vy on dw for every j, k. We may
assume that —1 < u;, vy < 0. Take € > 0 and let G be open in  such that ¢(G,Q) < ¢
and u,v are continuous on F' = '\ G. There is a continuous ¢ on 2 such that v = ¢ on
F. We have

(dd°v)" = lim (dd°v)"™.
j—o0

{u<v} {u;<v}

Since {u; < v} C {u; < ¢} UG and since {u; < ¢} is open
/ (ddv)™ < / +/ < lim (ddvg)™ + €.
k—o0
{uj<v} {uj<e}t G {u; <o}
From {u; < ¢} C {u; < v} UG and {u; < v} C {u; < vy} it follows that
/ (ddevy)" < / +/ < / (ddv)" + .
{uj<e} fuj<v} G {u;<vi}

By the first part of the proof

/ (ddvi)"™ < / (ddu;)™,
{uj<vi} {uj<vi}
thus
dd®v)" < lim lim dd®u;)"™ + 2¢ < lim ddu;)" + 2e.
am - am J : J
| — 00 k— 00 J—0o0
{u<v} ! {uj<vi} {u; <v}

Further,

/ (ddCUj)n S / (ddcuj)" + e
{u; <o} {u; S} F
and, since the set {u < v} N F is compact and {u; < v} C {u < v},

Tim / (ddeu;)" < / (ddu)" < /(ddcu)”.

Jj—oo
{u; <v}inF {uv}nF {u<v}
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Because € > (0 was arbitrary, we obtain
/ (ddv)" < / (dd°u)",
{u<v} {u<v}
This implies that for every n > 0
/ (ddev)" < / (dd*(u+ )" = / (ddeu)".
{utn<v} {utn<v} {utn<v}

The theorem follows since {u +n < v} T {u < v} and
{u+n<v}l{u<viasnl0. m

Corollary 2.2.7. Let Q be a bounded domain in C" and u,v € PSH N L*°(Q) be such
that v < v and lim,_,gq u(z) = lim,_ 5o v(z) = 0. Then

/Q (dd°v)" < /Q (ddeu)™.

Proof. For A\ > 1 we have Au < v in €2, thus the corollary is a direct consequence of
Theorem 2.2.6. m

Show that (dd®log™ (|z|/R))"* = (27)"do where do is the unitary surface mea-
sure of 0B(0, R).

The domination principle also easily implies the comparison principle.

Corollary 2.2.8. Let 2, u and v be as in Theorem 2.2.6. Assume moreover that (ddu)" <
(ddv)™. Then v < u.

Proof. Set ¢(z) = |2|*> — M, where M is so big that 1 < 0 in Q. Suppose that the set
{u < v} is nonempty. Then for some € > 0 {u < v+ e1} is nonempty and thus of positive
Lebesgue measure. By Theorem 2.2.6

/ (dd°u)™ > / (dd*(v + 1p))™
{u<v+ey} {u<v+ey}

> / (ddv)™ +4"nle" X ({u < v +ey})

{u<v+tey}

> / (ddv)™

{u<v+ey}
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which is a contradiction. m

Corollary 2.2.9. IfQ) is a bounded domain in C™ and u,v € PSH N L*> () are such that
(dd°u)™ = (dd°v)™ and lim,_gq(u(z) —v(z)) =0 then u = v. m

The next result is due to Demailly [Dem3].

Theorem 2.2.10. For u,v € PSHNL®

loc

(dd® max{u,v})" > X{u>v} (dd“u)" + X {u<wv) (ddv)".

Proof. It is enough to show this inequality of measures on the set {u > v}, since then we
can exchange u and v to get it on the complement. Let K C {u > v} be compact. We may
assume that u, v are defined in a neighborhood of Q and —1 < u,v < 0. Let uj = u* pi/j,
vj = v * p1/; be the regularizations of u,v, then —1 < w;,v; <0 in Q. By Theorem 2.2.2
there is an open G C €2 such that ¢(G,) < e and u,v are continuous on Q2 \ G. The
convergences u; — u and v; — v are uniform on compact subsets of 2\ G, thus for
every ¢ > 0 there is an open neighborhood U of K such that u; +J > v; on U \ G for j
big enough. Hence

[ @ty <t [ @@y < tim [ @)
K j—oo JU j—oo JU\G
=c+ lim (dd® max{u; + d,v;})".
j—oo JU\G

If we let ¢ — 0 and j — oo, we get

/K(ddcu)” S/_(ddcmax{u+57v})”

U
and, if U | K,
/ (ddeu)" < / (dd° max{u + 6, v})".
K

K

The desired estimate now follows if we let § — 0. =

Note that if u, v are continuous then Theorem 2.2.10 is much easier to prove. For then
it is enough to show the inequality on the set {u = v} and for compact K C {u = v} we
have

/ (dd® max{u,v})™ > lim [ (dd°max{u+¢e,v})" :/ (ddu)™.
K el0 K K

49



2.3. The Dirichlet problem

The main goal of this section is to prove the following theorem due essentially to
Bedford and Taylor [BT1], [BT2].

Theorem 2.3.1. Let u be a locally bounded plurisubharmonic function in an open subset
Q2 of C". Then u is maximal in Q iff (dd°u)™ = 0. In particular, being a locally bounded
maximal plurisubharmonic function is a local property.

The main tool in proving Theorem 2.3.1 will be the following regularity result.

Theorem 2.3.2. Let P be a polydisk and assume that f € C11(9P) (that is f is C*! in
a neighborhood of OP) is such that (2.3.2) holds on P. Then u; p € C*'(P).

Proof. By Proposition 1.4.4 u := u; p € PSH(P) N C(P). We may assume that P =

(A(0,1))™ is the unit polydisk. Take r < 1 and let P. = (A(0,7))". For z € P, a € P and
h small enough define

hi + (1 —|a1|? —aihi)z hp + (1 = |a,|? — Enhl)zn)

Ton(z) =T(a,h,z) = < 5 ..., 5 -
1 —la1|? —aithy + hi2z1 1 —lan|? — anhp + hpzy

Then T is C™ smooth in a neighborhood of the set P, X ﬁ(l_r)/g x P and T,n is a
holomorphic automorphism of P such that T}, (a) = a + h and T, o(z) = z. Set

and

Va,n(2) = %(V(a, h,z) 4+ V(a,—h,z)).

Vo, € PSH(P)N C(P) and we claim that for K big enough we have v, , — K|h|? < u for
every a € P, and h € P_,)/2. It is enough to show that v, — KIh|?> < f on P and
since the both functions are continuous it is enough to prove this inequality on

R:= U AT 5 9A x AT,

J=1

But this follows from Proposition A1.5, since V is C!! on P, x P2 x R and |D?V| < K
there, where K depends only on n,r and sup |D?f|. Therefore, for z = a we obtain

u(a+ h) +u(a — h) — 2u(a) < K|h|?
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for a € P and h € P;_;)/2. To finish the proof of Theorem 2.3.2 it suffices to use the
following fact.

Proposition 2.3.3. Let 2 be a bounded domain in C". Assume that u is a plurisub-
harmonic function in a neighborhood of €} such that for a positive constant K and h
sufficiently small it satisfies the estimate

u(z 4+ h) +u(z — h) —2u(z) < K|h|?, z€ Q.
Then u is CY! in Q and |D?*u| < K there.

Proof. Let u. = u* p. denote the standard regularizations of u. Then for z € . := {z €
Q2 : dist (2,09) > e} and h sufficiently small we have

ue(z + h) +uc(z — h) — 2u.(2) < K|h|?
This implies that
(2.3.1) D?u..h? < K|h|*.
We have

° 0%u 0%u — Pu. — —
D?u..h? = ——= hihg +2——=h.h < h:h
" j%z:l <8zj8zk it 02,0z 7 kT z k)

and, since u. is plurisubharmonic,

" Pu. o —
h;h
L 8zj8§k gk

v
o

D*u..h? 4+ D*u..(ih)* = 4
J,k=

Therefore by (2.3.1)
D?*u..h? > —D?u..(ih)* > —K|h|*.

This implies that |D?u.| < K on Q. and the proposition follows from Theorem 1.1.13. m

Let f € C(OP), where P is a polydisk. Show that there exists v € PSH(P) N

C(P) with v|gp = f iff f is subharmonic on every analytic disk embedded in OP.

One can modify the proof of Theorem 2.3.2 using the holomorphic automorphisms
of the the unit ball to get an analogous regularity in euclidean balls (this is an
original result from [BT1]). The following example of Gamelin and Sibony shows that it
is not possible to get a better regularity.

Let B be the unit ball in C2. For (z,w) € 9B, set
2 2
Flew) = (122 = 1/2) = (juf — 1/2)°
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In particular, f € C*° (0B). Show that
u(z,w) = up p(z,w) = (max{0, |22 — 1/2, jwf? — 1/2})°,
so that u is C! but not C?.

Proof of Theorem 2.3.1. If u € PSH N LS () is such that (ddu)™ = 0 then it follows
immediately from the comparison principle that u is maximal in €). Assume therefore
that w is maximal in a neighborhood of a polydisk P. Let f; € C1'1(OP) be a sequence
deacresing to u on 0P, then Uy p | won P by Proposition 1.4.9. Hence, by Theorem 2.3.2

we may assume that u is C1! in P and we have to show that (dd°u)™ = 0 there. By the
Rademcher theorem u is twice differentiable almost everywhere in the classical sense and,
by Proposition 2.1.6, (2.1.3) holds. Let 29 € P be such that D?u(zg) exists and assume
that det(0?u/0z;0zx) > 0. The Taylor expansion gives

n a2 _
u(zo+h) =Re P(h) + 3 a—u_(zo)hjhk +o(|h|?) > Re P(h) + c|h]? + o(|h]?),
k

where .
P(h) 2 )R Jhjh
(h) = u(zo) + Zé) (20)hj + Z (‘)zjazk (20)hjha,

and ¢ > 0. We can find r > 0 such that u(zo+h) > Re P(h) if |h| = r but u(z9) = Re P(0)
which contradicts the maximality of u. m

Theorem 2.3.1 allows to use the methods from the theory of the complex Monge-
Ampere operator in order to show certain elementary properties of maximal plurisub-
harmonic functions. For example, Theorem 2.2.5 immediately gives the following:

Theorem 2.3.4. Let u; be a sequence of maximal plurisubharmonic functions increasing
to a plurisubharmonic function u almost everywhere. Then u is maximal. m

As a direct application of Theorem 2.1.10 we can get a result from [Zer]:

Theorem 2.3.5. Assume that u;, j = 1,2, is a maximal plurisubharmonic function in
domain Q; C C". Then max{uy,us} is maximal in 3 x Q3. =

Theorem 2.3.1 also makes it easy to solve the homogeneous Dirichlet problem for the
complex Monge-Ampere operator

u € PSHNL>®(Q)
(2.3.2) (dd°u)™ = 0
u* = uy, = f on 0f.
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Here () is a bounded domain in C" and f € C(0f2). By Corollary 2.2.9 the solution, if
exists, must be unique and by Corollary 2.2.8 it must be equal to u; o (as defined by

(1.4.1)). By Theorem 1.4.3 the solution has to be continuous on Q. Theorem 2.3.1 coupled
with the results of section 1.4 immediately gives the following.

Theorem 2.3.6. Assume that ) € C" is a regular domain. Let f € C(9Q) be extendable
to a plurisubharmonic, continuous function on €) (that is (1.4.3) holds). Then there exists
a unique continuous solution of (2.3.2). m

In particular, the problem (2.3.2) has a continuous solution for every f € C(99) iff Q
is B-regular.
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II1. Pluripolar sets and extremal plurisubharmonic functions

3.1. Pluripolar sets and the relative extremal function

A set P C C" is called pluripolar if for every zy € P there exists an open neighborhood
U of zop and v € PSH(U) such that PNU C {v = —oo}. Let Q be an open subset of
C™. Subsets of sets of the form {u < w*}, where u = sup, u, and {u,} is a family of
plurisubharmonic functions in €2 locally uniformly bounded above, are called negligible in
Q.

Observe that negligible sets are of Lebesgue measure 0 (by Theorem 1.2.3.viii). Also,
if £ C {u = —oo} for some u € PSH(Q2) with u < 0 then E is negligible in €. Indeed,
{u = —o0} ={v <v*}, where v = sup au.

a€(0,1)

Also note that by Proposition 2.2.3, if u € PSH N LS., then (dd°u)™ takes no mass

at pluripolar sets.

The main goal of this section is to prove the following two theorems:

Theorem 3.1.1. If P C C" is pluripolar then there exists uw € PSH(C™) such that
P C {u = —o0}. Moreover, u can be chosen to have a logarithmic growth, that is there is
C > 0 such that

u(z) <log™|z|+C, zeC™

Theorem 3.1.2. Negligible sets are pluripolar.

The first part of Theorem 3.1.1 is due to Josefson [Jos] and the logarithmic estimate
was obtained by Siciak [Sic2]. Theorem 3.1.2 as well as the proof of Theorem 3.1.1 below
is due to Bedford and Taylor [BT2].

The main tool in proving Theorems 3.1.1 and 3.1.2 will be a relative extremal function
which we already encountered in the proof of Theorem 1.4.6: if E is a subset of a domain
Q2 in C" then we set

up =upq =sup{v € PSH(Q):v <0, v|p < —1}.
Here are the basic properties.
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Proposition 3.1.3. i) If £y C Q; and Ey C )y are such that £y C Ey and € C €y then
Up, 0, = Ug, o, O1 Qq;

i) u}, is maximal in Q\ E;

iii) u}, = 0 iff there is w € PSH(Q) such that u < 0 and P C {u = —o0};

iv) uf,p = uy if P is as in iii);

v) If K is a sequence of compact subsets of Q0 decreasing to K then u K, T ug;

vi) If K C Q is compact and ) is bounded and hyperconvex then the supremum in
the definition of u K. can be taken only over continuous functions. In particular, in such
a case ug q Is lower semicontinuous;

vii) If K, are as in vi) and K is such that Q \ K is a regular domain (in the real
sense), then u ¢, is continuous on Q (with uy o = 0 on 9Q).

Proof. i) is obvious.

ii) By the Choquet lemma (Lemma A2.3) there is a sequence u; € PSH () such that
u; <0, uj|xg < —1 and up = sup; u;. Considering the functions max{uy, ..., u;} instead
of u; we may assume that u; is increasing to u}; almost everywhere. If B € Q \ FEis a
ball then by Proposition 1.4.10 we may assume that u; are maximal in B. Theorem 2.3.4
gives ii).

iii) If w = —oo on P then eulp < —1 for every € > 0, hence up = 0 on {u > —oo}
and consequently up = 0. Conversely, if u};, = 0 then by the Choquet lemma there exists
a sequence v; € PSH(Q) increasing to 0 almost everywhere and such that v; < 0 and
vj|p < —1. Choosing a subsequence if necessary, we may assume that [ 5 lUjldA < 277 for
a fixed B € (2. Therefore the function u := }_; v; is plurisubharmonic and u = —oo on P.

iv) We have to show that v < uj, p for every v € PSH(Q) with v <0 and v|g < —1.
If u is as in iii), then v + eu < —1 on E U P for every € > 0. Thus v + eu < ug p and
v < up,p almost everwhere, hence v < uy, p everywhere.

v) We have Ug, T w < ug. It remains to show that v < w for every v € PSH(Q)
with v < 0 and v|g < —1. For every £ > 0 the set {v < —1 + ¢} is an open neighborhood
of K, so there is j such that U|Kj < —1+4¢, hence v —¢ < Ug, < w.

vi) Let ¢ € PSH(Q2)NC(Q) be such that ¢|pq = 0 and ¢|x < —1. Take v € PSH(Q)
with ¢ < v < 0, v|g = —1 and fix § > 0. If ¢ > 0 is small enough, the regularization
ve = v * pe is defined in a neighborhood of {iy < —¢}. From an elementary property of
upper semicontinuous functions it follows that m(e) := maxx v. | —1 as € | 0. Set

. { max{t,ve — (m(e) +1) =6},  if ¢ < -4,

R otherwise.

Then w is continuous, plurisubharmonic in Q, w < 0 and w|g < —1. Thus, if € is
sufficiently small, then on {¢) < —0} we have v — 2§ < v, — 2§ < w < Up o
vii) The same as the proof of Theorem 1.4.6. =

Prove that if G C Q) is open then ug = ug,.
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Let E C Q be such that £ N OF is compact. Show that there exists a sequence
of open set G; C (2 decreasing to E such that ug, T ug.

Let K and € be as in vi). Show that the PSH(Q)-hull of K is given by Kq =
{ug o =—1} and Us = Uk o
) 97 )

If ¢ is a set function defined on Borel subsets of ) then for arbitrary E C ) we set

¢ (E) = ECG,lan open C(G)
c(E) = sup c(K).

KCEFE, K compact

Theorem 3.1.4. Suppose E is an arbitrary relatively compact subset of a bounded
hyperconvex domain ). Then

(B, Q) = / (ddeuy)"
Q
If K C Q is compact then ¢(K,Q) = c*(K,Q).
Proof. First we want to show that

(3.1.1) c(K,Q) :/ (dd°uy)", K €, K compact.
K

The inequality “>” follows directly from the definition of ¢(K,£2). To show the converse,
take u € PSH(Q) with —1 < u < 0 and € > 0. Since € is hyperconvex, there is ¢ €

PSH(Q)NC(Q) with ¢|pn = 0 and ¥|x < —1. By the Choquet lemma we can find a
sequence v; € PSH(Q) with ¢ <wv; <0, vj|x < —1and v; T v, v* =uj. Set

uj = max{v;, (1 —2e)u —e}.

Then —1 4+ ¢ < u; < —¢, u; = (1 —2¢)u — ¢ in a neighborhood of K and u; = v; on
{1p > —e}. Therefore for € small enough

(1—26)"/ (ddcu)”:/(ddcuj)” S/ (ddu;)" =/ (ddvj)™.
K K {<—e/2} {¥<—e/2}

By Theorem 2.2.5 (dd“v;)" — (dd“uj;)"™ weakly. Thus

(1 - 2¢)" /K (dd°u)” < Tim (dd°v;)™ < /

| (ddewl)" = / (ddeue)”
I J{yp<—e/2} {yp<—e/2} K
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by Proposition 3.1.3.ii and (3.1.1) follows.
Next, observe that we also have

(3.1.2) c(G,Q) = /(ddcué)”, G € Q, G open.
Q

Indeed, let K is a sequence of compact sets increasing to G. Then u}}j is decreasing to
some plurisubharmonic v and v > uy, = ug. If B @ G then up, = —1lon B for j big
enough, thus v = —1 on G and ug, | ug. Now (3.1.1) and Proposition 2.2.1.v implies
(3.1.2).

Let now E € (2 be arbitrary and let G € 2 be an open neighborhood of E. We may
assume that ¢ < —1 on G. Then ¢ < uf, < uj <0 and by Corollary 2.2.7 and (3.1.2)

/Q (ddeuly)"™ < / (dd°ul,)™ = (G, Q).

Q

Hence [, (dd°u};)™ < ¢*(E,Q). Let v; be a sequence as above obtained from the Choquet
lemma with v; T u}, almost everywhere. If A; T 1 and G; = {v; < —\;} then G; are open,
decreasing and )\j_lvj < ug,- Therefore ug]_ | u% almost everywhere and Theorem 2.2.5
implies that

lim [ (ddug;)" :/(ddcuE)". n

I J0O Q

Let B, = B(0,r) and r < R. Show that

) log|z| —log R 1
U= z) =maxq ————— —
Br,Br log R —logr ’

and

— 2m "
B,,Br)=|——5—7-—7] .
2 ) (logR—logr)

Corollary 3.1.5. Assume that P € {2 € C™ and that € is hyperconvex. Then c¢*(P,Q) =0
iff there exists u € PSH () with u < 0 and u = —o0 on P.

Proof. It follows immediately from Theorem 3.1.4 and Proposition 3.1.3.iii. =

Proof of Theorem 3.1.1. We can find bounded hyperconvex domains €2; such that
U; @ = C" and u; € PSH(S;) with P; := PN Q; C {u; = —oo}. By Corollary 3.1.5

c*(P;, ;) = 0. Set By, := B(0, e2k). Let j(k) be a sequence of positive integers such that
each of them is repeated infinitely many times and ;) € By. By Proposition 2.2.1.iv
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c*(Pj(ky, Bry2) = 0, hence Up, ) By, — 0and thereis vy € PSH(Bj42) with —1 < v, <0,
v, = —1 on Pj(k) and fBl |Uk|d)\ < 27k, Set

Be(z) = { max{vg(z),2 % (log|z| — 2¥*1)}  if 2 € By,
PEEE A 2k (log 2] — 26+ if € C"\ Bjso.

The expression 27 %(log |z| — 2¥*1) is > 0 on C" \ Bgy1, < 0 on Byy; and < —1 on By.
Therefore v, € PSH(C"), v < 0 on By41 and 0 = vg, on By. Thus u := Y o U €
PSH(C"), since [ |u|d)\ < 1. Moreover, for z big enough we infer

< Y mE< Y 2M(ogl] — 2 <logl.

2k+1<log | 2| 2k+1<log | 2|

We have vy, = —1 on P}, thus u = —oo on P = Uj P;, since each P; is repeated infinitely
many times. m

Corollary 3.1.6. A countable union of pluripolar sets is pluripolar.

Proof. Let P;, j = 1,2,..., be pluripolar. Fix a ball B in C". By Theorem 3.1.1 we
can find u; € PSH(B) with u; < 0, P, N B C {u; = oo} and [, |uj|dX < 277, Then
w:=y u; € PSH(Q)and JP,NB C {u=—oc}. n

Proof of Theorem 3.1.2. By Corollary 3.1.6 and the Choquet lemma we may assume
that N = {u < w*} N K, where u = sup; u;, u; € PSH(Q), u; < 0, Q is a bounded
hyperconvex domain and K isa compact subset of €). By Theorem 2.2.2 for every € > 0
there is an open G C Q with ¢(G,2) < € and such that u*,u; are continuous on Q \ G.
Therefore u is lower semicontinuous on €2\ G and for every o and § with a < 8 < 0 the
set

K:Kag:{zel?\G:u(z)§a<6§u*(z)}

is compact. We claim that ¢*(K,Q) = 0. To prove this we may assume that a = —1. We
have u; < —1 on K, thus u; < uy and u* < uj, so uj > 8> —1 on K. From Theorems
2.3.4 and 2.2.10 we infer

(K, Q) = ¢(K,Q) = /

(ddeuio)" < / (dd° max{u, B))" < ||, ),
K K

thus ¢*(Kqap,2) = 0. Moreover, N C G U, 3¢ Kap and we can easily construct an

open G with N ¢ G C Q and c(é,Q) < 2g, so that ¢*(N,Q) = 0 and N is pluripolar by
Corollary 3.1.5. =

We can now prove a further property of the relative extremal function:
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Theorem 3.1.7. Assume that E; C Q;, j =1,2,..., are such that E; T E, ; T Q and Q2
is bounded. Then uy, . | up -

Proof. We have up o | u>upqand u € PSH(Q). The set P = Uj{qu’Qj < u*Ej’Qj}
is pluripolar, thus there exists v € PSH(2) such that v = —oo on P and v < 0 (because
Q is bounded). Since up, o = —1on E;\ P, it follows that w = —1 on E \ P. Therefore
by Proposition 3.1.3.iv, u < U*E\P,Q =Uupg ™

Theorem 3.1.8. If Q is a bounded hyperconvex domain then c*(-,{2) is a generalized
capacity on Q (see A3 for the definition). For every Borel set E C Q we have c,.(E) =
c¢(E) =c*(E).

Proof. Obviously Ey C E; implies ¢*(E7) < ¢*(Ep). If K; | K and K are compact then
by Proposition 3.1.3.v u’;{j T uj almost everywhere and ¢*(K;) | ¢*(K) by Theorem 3.1.4.
In the same way, using Theorem 3.1.7, we can prove that if £; T E then ¢*(E;) T ¢*(E)
provided that F is relatively compact. If E is arbitrary, it is no loss of generality to
assume that E; € ( for every j. Fix € > 0. Since ¢*({ug, < uj,}) =0, there is an open
G with J;{up, <up,} C G and ¢(G) <e. Fix o > —1 and set U; := {uj, < a}. Then
up, /lal < uy, = up;, and by Corollary 2.2.7

c(U;) :/Q(ddcu”(}j)n < \04—”/Q (ddcu*Ej>n= la| =" (E;).

The set V = G UJ, U; is an open neighborhood of E and

c(V)<e+ lim ¢(U;) <e+|a|™™ lim c*(E)),

J—00 J—00

which implies that ¢*(E) < lim;_,o ¢*(E;). This shows that ¢* is a generalized capacity.
Now by Theorem A3.1 applied to ¢* and the second part of Theorem 3.1.4 for every
Borel set E C ) we have

¢ (E) - KCE, ;?fzompactc (K) - C*(E) -

The first part of the following proposition is due to Sadullaev [Sad] and the second
one to Bedford and Taylor [BT2].

Proposition 3.1.9. Let Q be a bounded domain in C" and E an arbitrary subset of
Q2. Then there is a decreasing sequence of open sets G; with E C G; C § such that
uzj = ug, T u}, almost everywhere, as j T oo. If E' C () is Borel then there is an increasing
sequence of compact sets K; C E such that u}j | ug.
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Proof. By the Choquet lemma there is a sequence u; € PSH(f) with u; < 0 and
uj|g < —1 such that u; T u}, almost everywhere. The sets G; = {u; < —1+4 1/j} are
open, decreasing and contain E. Since u; —1/j < ug, < ug, it follows that ug, T uj
almost everywhere.

To show the second part define

~(A) ::/ i |d, A C Q.
Q

From Proposition 3.1.3.v and Theorem 3.1.7 it follows that v is a generalized capacity. If
E' is Borel then by Theorem A3.1 we have

V(E) = sup V(K),
KCE, K compact

thus there is an increasing sequence of compact sets K; C E with y(K;) T v(£). Then, if
F =JKj, we have ug, | up > up and u} = uj almost everywhere, hence everywhere. m

Proposition 3.1.10. Assume that FE is a subset of a bounded domain ) in C"™. Then

/ (dd°uly)™ = 0.

{up>—1}

Proof. Note that
/ (ddup)" =0 <~ /(ddcu}})" = /—u*E(ddCuE)"
{ug>-1} Q Q

and that (dd“uf)" = 0 in Q \ E. If E is compact then it is enough to observe that the set
En{uj > —1} is contained in {uy < u};} and thus pluripolar. Next, if E is an F, set
and K; T E are compact then u}j | ux and by Theorem 2.1.5

/ —up(dduy)” = lim [ —uj (dd°uy )" = lim [ (ddu}. )" = / (ddup)"™.

Q j—o0 Jo ! ! j—oo Jo ! Q

Finally, let E' be arbitrary. Then sets G; given by Proposition 3.1.9 are open, in particular
F,. Now using Theorem 2.2.5 in the same way as in the case of F, sets we conclude that

/(ddcu}})” :/ —up(dduy)". =
Q Q

We finish this section with a product property for the relative extremal function (see
[NS] and [B12]):

Theorem 3.1.11. Let Q; be bounded pseudoconvex domains in C", j = 1,2. If K; C Q)
are compact then

(31'3) uKlXK2791XQQ = ma’X{uKl,Ql7uK27QQ}'
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If E; C Q) are arbitrary then

(3]“4) u.z'l XEQ,Ql XQQ = ma’X{uEl,Ql7u*E2,QQ}’

* ni+n * n * n
(3.1.5) (dd°u, gy 0 x0,) = (ddup, q,) A (dd°uf, q,)
and, if E; are relatively compact in 2; and €); are hyperconvex,

(316) C*(El X EQ,Ql X Qg) = C*<E1,Ql)c*(E2,QQ).

Proof. By Theorems 3.1.7 and 3.1.4 we may assume that €); are hyperconvex. First note
that for arbitrary F; C €1; we have the following inequalities

(31.5) maX{’LLEth,UE%QQ} S uEl XEQ,Ql XQQ S _uElagluE27Q2.

The first inequality follows easily from the definition of the relative extremal function. The
second one we can show first on the cross F; x 25 U )y x E5 and then on €y x {5 fixing
one of the variables.

If K; C Q; are compact then we can approximate them from above by compacts
K Jl such that Q; \ K Jl are regular in the real sense. Thus, by Proposition 3.1.3.v we may

assume that Q; \ K are regular and, by Theorem 1.4.3, that u K,.Q, are continuous on ﬁj
and Uy g, 0,x0, 1S continuous on Q1 x Qo. Then the inequality “>" in (3.1.3) follows
immediately. If z' € K then ug . g o, xq,(2',:) = —1 on K3 and therefore we have

“<” on Q x Ko UK x Qs. By Theorem 2.3.5 the right hand-side of (3.1.3) is a maximal
function in (27 \ K1) x (Q2 \ K2), which gives (3.1.3). By approximation, we immediately
conclude that (3.1.3) holds also for open subsets of ;.
The inequality “>” in (3.1.4) is clear. For & > 0 set U5 := {up, o < —1+4+¢}. We
—1,,% * * 1
see that (1 —¢&)7 u, o < uys o < U}, o, hence uys o, Tup, o, ase | 0. By (3.1.5) on

U x Us we have ug g, o, xa, < —(1=6)%, 80 U g, 0, x0, < —(1—¢)? there. Tt follows
that on Q2 x Q9

2 % *
(1 - 6'\) U’El XEQ,Ql XQQ S uUfXU;,QlXQQ S uEl XEQ,Ql XQQ'

Therefore,

* 1 .2y _1: 1 .2
uEl)(EQ,QlXQQ(Z ’Z )_E%uUfXUS,leﬂg(z 7z )

= lgig maX{uUf,Ql (Zl)’ uU;,QQ (Z2)} S maX{U/*El,Ql (21)7 U*E27Q2 ('22)}’
which shows (3.1.4).
(3.1.5) follows from (3.1.4), Proposition 3.1.10 and Theorem 2.1.11, whereas (3.1.6)
can be deduced from (3.1.5) and Theorem 3.1.4. =
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Show that if {2; € C" are hyperconvex and K; C Q) are such that 0K; N K are
compact then (3.1.3) holds.

3.2. The global extremal function

We shall consider the following two families of entire plurisubharmonic functions.

L:={ue PSH(C"): limsup (u(z) — log |z|) < oo}

|z| o0

Ly :={ue PSHNL.(C") :limsup |u(z) — log|z| | < co}.

|z| =00

Note that Theorem 3.1.1 meant precisely that P C C™ is pluripolar iff P C {u = —oo} for
some u € L.

Proposition 3.2.1. i) If u € £ then

(3.2.1) u(z) < max u~|—10gM

= if ]z——z0|2 T,
B(zo,r)

ii) If {us} is a family of functions from £ and u = sup, u, then either u* € L or
u* = —400;

iii) Let B = B(0,1) be the unit ball in C™. There exists ¢, > 0 such that for every
u € L we have

1
max u <

< wdo + ¢,,.
B o(0B) /8B

Proof. i) By v denote the right hand-side of (3.2.1). For every a < 1 we have au < v on
0B(zp, R) for R big enough. Since the same inequality holds on 0B(z,r), (3.2.1) follows
from the maximality of v in C™\ {0}.

ii) Assume that u*(z9) < 400 for some zy. Then there is » > 0 such that M =
maxg . .U < +00. By i) for every o and |z — zg| > r we have u,(z) < M +log|z — 20| /7,
hence u* € L.

iii) We may assume that maxwu = 0. From i) it easily follows that max u > logr, if
B B(0,r)

0 < r < 1. From the fact that u is in particular subharmonic we deduce that for z € B(0, )

1 1_|Z|2uw o(w 1= 1 udo
=) < 5B /aB e —wpr ) S e e /aB “

Therefore, if 0 < r < 1,

1 1 2n—1
/ udazlogr&.l
O'(aB) 9B 1—7r
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Proposition 3.2.2. i) If u € LN L3, then [, (ddu)™ < (2m)".

loc

i) If u € L then [, (ddu)™ = (2m)".

Proof. Since ii) holds in the particular case of the function log™ |z| € L4, it is enough to
show that if u € LN L{S, and v € L4 then [, (dd°u)” < [, (dd°v)". Take K € C". By

loc
adding positive constants if necessary, we may assume that 0 < 2v < w on K. For every

a, 1 < a < 2, there is R big enough such that u < aw in a neighborhood of dB(0, R). By
Theorem 2.2.6 we have therefore

/(ddcu)” < / (dd°u)"™ < o™ / (ddv)™ < a™ /(ddcv)”
K

{av<u} {av<u} Cn

and the proposition follows. m

Let E be a bounded subset of C". The global extremal function of E is defined by
Vi :=sup{u € L :u|g <0}.

(Sometimes Vg is called the Siciak extremal function.)

|z — zo|
Show that Vi, 1 (2) = VE(zo,r)(Z) =log™ — .

r

Here are the basic properties of V.

Theorem 3.2.3. i) If By C Ey then Vi > Vg ;

ii) P is pluripolar iff V} = +oo;

iii) If E is not pluripolar then V}; € L ;

iv) If E is not pluripolar then V}; is maximal in C" \ E;

v) Viup = Vi if P is pluripolar;

vi) If K; | K and K, are compact then Vk, T Vs

vii) If E; 1 E then Vg, L Vs

viii) If K is compact then the supremum in the definition of V- can be taken only
over smooth functions. In particular, V. is lower semicontinuous.

Proof. i) is obvious.

ii) If P is pluripolar then there is u € £ with P C {u = —o0}. For every M > 0
we have u + M < Vp, hence Vp = +oo on {u > —oo}, so V5 = +00. Now assume
that V5 = +o00 and let B be the unit ball. For every j = 1,2,... there is u; € £ with

uj|p < 0 and M; = maxgu; > 27. Set u := ZQ‘j(uj — M;). By Proposition 3.2.1.i
j=1
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u;(z) < M; +log™ |2|, thus u(z) < log™ |z|. From Proposition 3.2.1.iii it follows that

1 / | /
wdo = 277 w; — M;)do > —c,.
o(0B) Jan ; o(0B) aB( ’ ))do 2

Thus u is not identically —oo and v € L, since for every R > 1 we may write u =

Z2ij(uj —log R — M;) +log R. On P we have u < —ZQ*J'MJ» = — 0.
j=1 ,

j

iii) From ii) and Proposition 3.2.1.ii it follows that V5 € £. Since E is contained in
some ball, we conclude that V5 € L.

Proofs of iv)-vii) are now similar to the proofs of corresponding properties of the
relative extremal function in section 3.1.

iv) By iii) V} is locally bounded. By the Choquet lemma there is a sequence u; € L,
u;|p < 0, increasing to V3 almost everywhere. If B € C* \ E is a ball then we can replace
uj by w; given by Proposition 1.4.10, thus V} is maximal in B by Theorem 2.3.4.

v) We have to show that v < Vj p for every v € £ with v|g < 0. We can find
u € L such that P C {u = —oo} and ulg < 0. For every € > 0 we have therefore
(1 —¢e)v+eu < Vg, p, hence v <V p on {u > —oo} and v < V3 p everywhere.

vi) We have Vi T w < Vj. Take v € £ with v|g < 0. For every £ > 0 the set {v < ¢}
is an open neighborhood of K and so there is j such that v|Kj <e Thusv—e< VKj < w
and V- < w.

vii) We have bej | u > Vg. We may assume that F is not pluripolar, hence u € £ and
the set P = J;{Vj, < Vg, } is pluripolar. Thenu = 0on E\P andu < Vi, p < Vi p =V
by v).

viii) Take u € £ with u|x = 0. Then for e > 0 uc = u*p. € LNC*™ and maxy ue | 0
as € | 0. Thus for every > 0 there is ¢ > 0 such that u =0 <u, — 0 < V. m

The next result, due essentially to Zahariuta [Zah], shows that for K compact V- can
be defined by means of polynomials in C™ and that was in fact the original definition of
Siciak [Sicl].

Theorem 3.2.4. Assume that K C C" is compact. Then

1
VK:sup{ElogU’]:PE(C[zl,...,zn], d>degP, |P| <1 onK}.

Theorem 3.2.4 will easily follow from the following approximation property of functions
from £ proved Siciak [Sic4] (see also [Sic3]).
Theroem 3.2.5. For every u € L there is a sequence

1
u; — max — log|P;
T 1<k<k, djy & |Pjx]

64



decreasing to w, where Pj, j = 1,2,..., 1 < k < k;, are polynomials in C" and d;;, >
degPjy.

Proof. For ( € C, ( # 0, set h(z,() := u(z/¢) + log|(|. Then h is plurisubharmonic
in C"™1\ {¢ = 0} and it is locally bounded near the hyperplane {¢ = 0}, since u € L.
For ¢ > 0 the function h. = h + elog|(| is therefore plurisubharmonic in C"*! and in
{I¢| < 1} we have h* = (sup, h.)", hence h can extended to a plurisubharmonic function
in the entire C**1.

The domain Q := {h < 0} is a balanced pseudoconvex domain in C"*! hence Q2
is convex with respect to the homogeneous polynomials by Theorem 1.4.8. Therefore
there exists a sequence K of compact subsets of {2 with K; = K JH , K; C intK;;, and

K; T Q. We claim that for every j there are homogeneous polynomials Q;1, ..., Q;x, such
that K; C ﬂ {lQjr] < 1} C intK,;;. Indeed, for every a € 0Kjy; there exists a
1<k<k,

homogeneous polynomial Q, with [Qq4(a)| > ||Qal|x, = 1. We can choose a finite number
of points ai, ..., ar, with 0K, 11 C U, {|Qa,| > 1}, thus we may take Q;x = Qq,.

Now set dji, := deg Q;x and f; := maxy, |ij|1/djk. Then f; is homogeneous of degree
1, K; C {f; <1} CintKjy1, hence f; is increasing to the Minkowski functional of €2, that
is to e". It follows that the polynomials Pj(z) := Q;x(z, 1) satisfy the hypothesis of the
theorem. m

Proof of Theorem 3.2.4. The inequality “>” is clear. To show the converse take u € £
with u|x = 0 and let u; be a sequence given by Theorem 3.2.5. Then maxg u; | 0 as
J T 00, hence for every d > 0 there is j such that u; — < u < Vi and the theorem follows.
]

For a different proof of Theorem 3.2.4 making use of the Hérmander L2-estimates see
[Dem3|.

Assume that K is compact. Show that the polynomial hull of K is given by
K ={Vy <0} and Vg = V.

A compact subset K of C" is called L-regular if Vi = 0 on K. If K is L-regular
then Vi < Vi, hence Vi is upper semicontinuous and thus continuous in C" by Theorem
3.2.3.viii. It is also easy to see that if C™ \ K is regular (in the real sense) then K is L-
regular. Therefore, every compact set in C" can be approximated from above by L-regular
sets.

Show that the cube [—1,1]" is an L-regular subset of C™ but it is not regular as
a subset of R?" for n > 2.
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If E is a bounded subset of C" then g := (dd°V3)" is called the equlibrium measure
of E. It is supported on OF and, by Proposition 3.2.2.ii, its total mass is equal to (27)™.

We have the following analogues of Propositions 3.1.9, 3.1.10 and Theorem 3.1.11 for
the global extremal function:

Proposition 3.2.6. For every bounded subset E of C" there is a decreasing sequence
of bounded open sets G; containing E such that Vg;j = VGj 1 Vi almost everywhere. If
E is Borel then one can find an increasing sequence of compact sets K; C E; such that
VK, =|Vg.

Proof. We proceed in the same way as in the proof of Proposition 3.1.9. As a suitable
generalized capacity we may take

V(A) = / (Vi+1)-ld\, AcC B(0,R),
B(0,R)
where R is big enough. m
Proposition 3.2.7. If F is a bounded subset of C™ then

/ (dd°VE)" = 0. m

{Vz>0}

Theorem 3.2.8. If K; are compact in C", j = 1,2, then
(32.2) VKl XK2 — maX{VKI 5 VK2 }

If E; are arbitrary bounded subsets of C"i then

(3.2.3) Vixe, = max{Vg,, Vg, }
and
(3.2.4) 1B x By = M HE,-

Proof. It is almost the same as the proof of Theorem 3.1.11. It is left as an to
the reader to show that (3.2.2) implies (3.2.3) and (3.2.4). To prove (3.2.2) we may assume
that K; are L-regular. Set v = max{Vx,, Vk,}. Then Vi, xx, <von C" x KoUK xC"
and, since v € L4, for every a > 1 we have Vi, «k,(2) < av(z) if |z| big enough. By
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Theorem 2.1.10, v is maximal in (C™ \ K) x (C"2\ K3), hence Vi, xx, < av everywhere
and the theorem follows. m

The next result is a comparison of the relative and global extremal functions (see [K1i2,
Proposition 5.3.3]) and their Monge-Ampere measures (this part is due to Levenberg [Lev]
in case of compact sets, with a much more complicated proof though).

Theorem 3.2.9. Let ) be a bounded hyperconvex domain in C" and E a non-pluripolar,
relatively compact subset of Q such that E C 2. Then 0 < 18n£ V% < sup Vp < 400 and on
oQ

Q we have

(3.2.5) iarg Ve(upg+1) < Vg < s(;g) Ve(ugg+1)

and

(3.2.6) (inf VE)" (dd*u )" < (ddVE)" < (sup V)" (dd"up.)".

Proof. The first statement is clear, since V= > 0 on C" \ E D 09, V= is lower semicon-
tinuous and V3 € L. If u € £ is such that u|g < 0 then u/sup Vg — 1 < up which implies
GI9)

the second inequality in (3.2.5).
Take v € PSH() with v < 0, v|p < —l and let 0 < e < m := %nggvﬁ. If Kjis a

sequence of L-regular sets decreasing to E, from the lower semicontinuity of VKj it follows
that iangf Vi, T m. It we set u := VKj for j big enough, then v € LN C, ulp < 0 and

u|ga > m — €. Therefore the function

w { max{(m —¢)(v+1),u}  on g,
' u on C"\ Q

belongs to £ and w|g < 0. Hence (m —¢)(v+ 1) < Vg on Q and (3.2.5) follows.

To show (3.2.6) observe that if uj,us € PSH N LS. and u; > ug then by Theorem
2.2.10 on {uy = us} we have (ddu;)™ = (dd® max{uy,us})™ > (dduz)™. By Propositions
3.1.11 and 3.2.7, (dd°u},)"™ = (dd°V7)™ = 0 outside the set {V = u}, +1 =0} and (3.2.6)

follows directly from (3.2.5). m

Assume that F is a bounded subset of C™ and let R be so big that E is contained
in a connected component 2 of the open set {V < R}. Show that

Ve < R(ugq+1) < Rlupg+1) =Vg.
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3.3. The pluricomplex Green function

Let €2 be a domain in C"” and w € €. The pluricomplexr Green function of {2 with a
pole at w was first defined in [Klil] as follows

9w = 9o(w,-) ==sup{u € PSH(R) : u < 0,limsup(u(z) —log |z — w|) < oo}.

zZ—w

Show that gB(w’T)(w, z) = log _|Z_rw|-

The next proposition lists the basic properties of gn and the proofs are left as an

to the reader.

Proposition 3.3.1. i) If Q; C Q5 then 9o, = 9a, on Q1 x Qy;
ii) If B(w,r) C € then g (w, z) < log @, z € )
iii) If Q@ € B(w, R) then log |Z}w‘ < go(w,z), z € Q;
iv) Either gq , = —oo or go, € PSH(Q); in the latter case g, ,, is maximal in

Q\{w};
v) IfQ; 1 Q then gg. | gg. w

The following result can be used in constructing explicit examples of the Green func-
tion with a pole at the origin.

Proposition 3.3.2. Let Q be a balanced pseudoconvex domain in C". Then gq, o = log fa,
where fq is the Minkowski functional of ().

Proof. From Theorem 1.4.8 it follows that log fo is psh in 2. From the definition of
the Minkowski functional one can deduce that if B(0,7) C €2 then fqo(z) < |z|/r, hence
log fa < gqo- On the other hand, if we fix zg € B(0,1), then {A € C : A2 € Q} =
A(0, p) for some p € (0, +0c] and log fo(Az0) = log [A|/7 = g (g (0, A) and it follows that
go,0 <log fo. m

The following comparison of the Green function with the relative extremal function
of a ball will turn out handy.

Proposition 3.3.3. Assume that r, R > 0 are such that B(w,r) € 2 C B(w, R). Then
for p € (0,r] we have

(3.3.1) log R (2) < gg(w, z) <log Ly

; uE(w,p),Q P E(w,p),Q(Z)’ z €} \ B(w7 P)-
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Proof. If z € 0B(w,p) then (3.3.1) follows from Proposition 3.3.1.ii,iii. The second
inequality in (3.3.1) can be then deduced from Proposition 3.3.1.iv and the definition of
the relative function. On the other hand, the function

{ max{log LR“}', log % uE(w7p)7Q(Z)}, if z€ Q\ B(w,p)

|z—w]
R

v(z) =

log if z € B(w, p)

is plurisubharmonic and v < g, ,, which gives the first inequality in (3.3.1). m

Let © be a bounded balanced domain in C™. Prove that €2 is hyperconvex iff
log fq is plurisubharmonic and continuous in C™ \ {0}.

The next two results are due to Demailly [Dem1].

Theorem 3.3.4. Assume that () is bounded and hyperconvex. Then e is continuous on
Q2 x Q (on Q x 9N we set g, :==0).

Proof. The continuity at the points from the diagonal of Q x Q follows directly from
Proposition 3.3.1.ii. It therefore remains to show the continuity of go on ' x (Q\ Q"), if
e Q" eQ Let r,R > 0 be such that B(w,r) € Q" € Q C B(w, R) for every w € Q.
For p € (0,7) set

up(w, z) := we, 2.

uﬁ(w,p),g(z)7

By Proposition 3.3.3 on ' x (Q2\ ©”) we have
og Uy >~ Jo = 108 — Uy,
p Q P

and, since log %/bg% l T as p | 0, it remains to show that for a fixed p the function u,

is continuous on €’ x Q. Observe that, since € is hyperconvex, for a fixed w, the function
u,(w, ) is continuous on Q by Proposition 3.1.3.vii. Therefore, it is enough to show that,
if w; — w then u,(wj, ) — wu,(w,-) uniformly in Q. Fix small ¢ > 0. Then for j big
enough we have B(w;,p —¢) C B(w,p) C B(w;,p+¢) and

log p—f log pfs
_ — = < u— < U— < U— < U—
YB(w;.0) logZ ~ YBw, pte) = "Bw.p) = "Bwsp-e) = "Blw,p) T log T

on Q. This completes the proof of the theorem. m

Theorem 3.3.5. Let w € (2, where  is a bounded domain in C". Assume that u; is a
sequence of locally bounded plurisubharmonic functions defined in a neighborhood U of
w, U C (, decreasing to gq . Then (ddu;)"™ tends weakly to (2m)" 0y,
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Proof. Let r, R and p be as in Proposition 3.3.3 with B(w,r) € U. For simplicity we may
assume that w = 0 and denote g = g, ,,, B, = B(w, p). In view of Proposition 3.3.1.iv it
is enough to show that

(3.3.2) lim (ddu;)™ = (2m)".

i— B,

The idea will be similar as in the proof of Proposition 3.2.2. We have log % < g(z) <

log ‘—i', z € B,. Fix a < 1 and let C' > 0 be such that alogp — C < log £&. We can find

€ > 0 so small that aloge — C > log £. Then, since maxg_u; | maxg g as j T oo, for
j big enough we have B. € {u; < f} € B, where f(z) = max{alog|z| — C,log £}. By
Theorem 2.2.6 we have

ddu;)" dd®u; )" dd¢ )" = dd¢ )" = o™ (2m)".
/§p< » z/{uj<f}< ;) E/Wf}( 5 /§6< )" = an(2)

On the other hand, fix # > 1. Then u;(z) > log% > ﬁlog% for z € By, where § > 0
depends on (3, thus

||

/ (dduj;)"™ < / <dalC max{u;, 3log —}) = 3" (2m)".
Bs B, r
Now, since (ddu;)"” — 0 on U \ {0}, we have

Jee EP\EJ

and (3.3.2) follows. m

Prove that g, is symmetric if n = 1.

Let Q = {(21,22) € C? : |2125] < 1}. Show that for w = (w1, wz) € Q one has

21722 — Wi1wW2

10g lf (wl,wg) % (0,0),

ga((wi,w2), (21, 22)) = 1 — wiwaz122

1 log |21 22| if (w1, ws) = (0,0).

In particular, g, is not symmetric.

In view of Propositon 3.3.1.v it means in particular that if n > 2 then g, need not
be symmetric even if €) is a very regular, bounded hyperconvex domain. A domain with
non-symmetric Green function was constructed for the first time by Bedford and Demailly
[BD] and the above simple example is due to Klimek.
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The product property for the Green function was first proved in [JP1]:

Theorem 3.3.6. Let §); be bounded hyperconvex domains in C"i, j = 1,2. Then for
w’ € Q; we have
gﬂl XQQ,(wl,wQ) = max{gﬂl,w17gﬂg,w2}'

Proof. We may assume that w’ = 0. The inequality “>” follows directly from the defini-
tion of the Green function. Theorem 2.1.10 implies that the function u := max{gq, ¢, 9q, o}
is maximal in (€27 \ {0}) x (2 \ {0}) and it easily follows that it is in fact maximal in
Q1 xQ22\{(0,0)}. For every a > 1 there exists ¢ > 0 such that agq, . < uon B((0,0),¢).
Since 2; are hyperconvex, we have u = 0 on 0(£2; X §2) and from the maximality of u it
follows that agg, o, < uin Q1 x Q\ B((0,0),6) for every 6 € (0,¢). m

We finish this section with a result describing the behavior of a Green function in
hyperconvex domains when a pole approaches the boundary:
Theorem 3.3.7. Let () be a bounded hyperconvex domain. Then for p < oo we have

Jim 9wl @) =0.

Proof. By Proposition 3.3.1.iii we have

(3.3.3) 19.wllLr) < C(p, Q).

In particular, it is enough to show that for Q' € Q
l. Ny — 0
wLH(%Q HgQ,wHLP(Q )

By Theorem 1.4.6 there exists ¢ € PSH(Q) N C(Q) with ¥|sq = 0 and (dd®y)"™ > d) on
Q. Then, using Theorems 2.1.8 and 3.3.5

19600l ey < / (—gop.)" (dd°)"

= lim [ (~max{gg,,, ~k})" (dd")"
— 00 Q

< a3y Jim [ o ma{gg, . —1))"
— (2|l ()

This proves the theorem for p = n. Now, the general case follows easily from the Holder
inequality and (3.3.3). m
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IV. Some applications of pluripotential theory

4.1. The Bergman metric

Throughout this section let Q be a bounded domain in C". By H?({)) we denote the
set of holomorphic functions in Q that are in L?(Q). If f is holomorphic in Q then in
particular |f|? is a subharmonic function and we have

1
P < 5

. fI2dN, 0 <7 < dist (z,00).
(B(Z7T)) /B(z,r) | | ( )

Therefore

Cn

(dist (z,0€2))

(4.1.1) F(2)l < _Ifll, zeQ, feHYQ),

where by || f|| we denote the norm of f in L?(€2). It follows that

%ﬁﬂédKﬁHWL<K@Qf€H%ﬂ

From this one can easily deduce that H?(€) is a closed subspace of L?(2), and thus a
separable Hilbert space with a scalar product

(f.9) = /Q fgdx,  f.g € HYQ).

For a fixed 2z € ) we have a functional
H*(Q)> fr— f(z) €C

which is continuous by (4.1.1). It follows that there is g, € H?(2) such that f(2) = (f, g.)
for every f € H?(Q2). For (,z € Q we set Kq((,2) = g-(¢), so that

f(Z):<f,KQ(‘,Z)>, Zer f€H2(Q)
In particular,
KQ<va) = <KQ(7w)’KQ(7Z)> = KQ(U),Z), Z,w € Q.
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We conclude that for z,w € Q Kq(-,w) is holomorphic and Kq(z,-) antiholomorphic in
Q. Hence, Kq(z,-) is holomorphic in a domain Q* := {w : w € Q}. From the Hartogs
theorem on separate analyticity it follows that Kq(-,~) is holomorphic in  x Q* and so
Ko € C*(Q x Q). Kq is called a Bergman kernel of .

We set kq(z) :== Kq(z,2). Then, by the definition of Kq, we have

(4.1.2) ka(z) = [[Ka( 2)II* = sup{|f ()" : f € H*(Q), |If]] < 1}.

Proposition 4.1.1. i) If Q0 C Qs then ko, > kq,;
ii) If Q; T Q then Kq, — Kq locally uniformly on 2 x Q, thus ko, | kq.

Proof. i) It follows easily from (4.1.2).
ii) Choose domains Q' and Q" so that Q' € Q" € Q. Then for z,w € Q' and j big
enough by the Schwarz inequality and i) we have

| Ko, (z,w)|* < ka, (2)ka, (w) < kan(2)kar (w).

Therefore the sequence Kg, is locally bounded in §2 x Q. If we apply the Montel theorem
to the space of holomorphic functions in Q x %, we see that Kq, has a subsequence
converging locally uniformly on € x . Thus, to complete the proof, it is enough to show
that if Ko, — K locally uniformly, then K = Kq.

For w € 2 we have

1K (- w)l|72 00y = Jli{go 1 Kq, (w720
<liminf ||Kq, (-, w)|[72(q,) = lim inf Ko, = K (w,w).
j—o00 J —00 ’
Since the estimate holds for arbitrary Q' € , we get

and so K(-,w) € H?(Q) for every w € Q. Fix w € Q and f € H?(Q). To finish the proof
it remains to show that

/f K(zw)dA(2).

For j big enough we have

— [ 1) Ra i)
Q;

and thus

/f K w)dA(z) = /Q/f(z) (Ko, Gow) — K(z,w)) dA(2)

+/Qj\9/ f(2)Kq, (z,w)d\(z) — /Q\Q/ F(2)K (z, w)dA(2).
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The absolute value of the second integral we may estimate by || f||r2\ )/ Ka, (w, w),
and it follows easily that all three integrals are arbitrarily small if Q' is sufficiently close
to 2 and j is big enough. =

Let ¢g, ¢1,... be an orthonormal basis of H2(Q2). Then

F=Y (f.ou)dn, feHQ),
k

and by (4.1.2) the convergence is locally uniform. Thus

(4.1.3) Ko(zw) =Y {(¢r Kal, Z¢>k ), z,weEQ,
k
and
(4.1.4) ko =) |¢kl>.
k

Since K, is smooth, from (4.1.2) it follows that log ko € PSHNC®(Q2). The Bergman
metric of ) is defined as the Levi form of log kq:

2

2(log ko)
- Za 0g ko) XXy, 2€Q, X eCn

r=0 ST 02;0Z,

(2, X) =

log ko (z + AX)

It can be expressed in the following way:

Theorem 4.1.2. For z € Q) and X € C" we have

P, X) =

e {ID IR € @) < 1.4() = 0}

where Dx f := Z?Zl 0f/0z; X
Proof. We may assume that X # 0. Define the following subspaces of H?(2):
H' = {f € H¥(9): f(2) = 0},
":={feH :Dxf(z) =0}.

Then H” C H' C H?(Q) and in both cases the codimension equals 1, since H' and H”
are defined as kernels of nonzero functionals ((- — z, X) € H” \ H'). Let ¢o, ¢1,... be an
orthonormal basis of H?(2) such that ¢; € H' and ¢, € H” for k > 2. Then using (4.1.4)
we may easily compute that

[Dx 61(2)|?

kalz) = lo(:), (= X) = S
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This gives “<”. To get the inverse inequality take any f € H’ with ||f|| < 1. Then

<f7 ¢0> =0 and o
F=Y {f 100
k=1

Therefore

[Dx f(2)] = [(f,#1)Dx $1(2)| < [Dx ¢1(2)]

and the theorem follows. m

We see therefore that log kq is strictly plurisubharmonic and thus the Bergman metric
is indeed a metric (even a Kéhler one). Namely, if v : [0,1] —  is a continuous and
piecewise smooth curve, then its length is defined by

- / By(t). 7/ (£))dt

and the Bergman distance dist o(z,w) between two points z,w € € is the influmum over
the lengths of all such curves joining z and w. If Q with this distance is complete then we
say that it is Bergman complete. The next result is due to Bremermann [Bre].

Proposition 4.1.3. If ) is Bergman complete then it must be pseudoconvex.

Proof. If €2 is not pseudoconvex then by the definition of a domain of holomorhpy there
are domains €1, such that () # Q; C QN Qy and for every f holomorphic in € there
exists f holomorphic in €25 such that f = f on ;. We may assume that 2y is a connected
component of 2 N Qs such that the set Qs N I N 0Ny is nonempty. Since Kq(-,~) is
holomorphic in Q x Q*, it follows that there exists K € C° (€ x Q) such that K(-,~)
is holomorphic in Q9 x €25 and K = Kq in Q1 x ;. This means that every sequence
2z — Qo NI N O, is a Cauchy sequence with respect to dist , which contradicts the
completeness of 2. m

The converse is not true and perhaps the simplest example of a pseudoconvex but not
Bergman complete domain is a punctured disc on the plane.

Our next goal is to show the following criterion due to Kobayashi ([Kobl], [Kob2], see
also [Kob3]).

Theorem 4.1.4. Let () be a bounded domain satisfying

— ()P

=09 kq(z) <[IfIP f e HH @)\ {0}.

Then ) is Bergman complete.
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Before proving Theorem 4.1.4 we want to look at a general construction of Kobayashi.

Define a mapping
L:Q 32— (Kq(,2)) € P(H*(Q)).

One can easily check that ¢ is one-to-one. In the projective space P(H?(Q2)) we have
the Fubini-Study metric F (see Section A4). The following fact was first observed by
Kobayashi [Kobl]:

Proposition 4.1.5. One has 32 = (*F?, that is

%z, X) = F*(u(2),/(2).X), z€Q,XeC"

Proof. Let v : (—¢,6) — § be a smooth curve with v(0) = 2z, 7/(0) = X. Set (t) =
Kq(-,7v(t)). We have to show that

[FO)IPIF (0)]]* = [7(0), 7' (0)) |
(4.1.5) 3 (z,X) = Y :
[ (O]
Let ¢, ¢1,... be an orthonormal basis of H?(£2) chosen in the same way as in the proof

of Theorem 4.1.2. Then

7(0) = ¢o(z) o,
3'(0) = Dx ¢o(2)po + Dx d1(2)¢1

and one can easily check that both hand-sides of (4.1.5) are equal to

[Dx ¢1(2)[?
|¢o(2)|?

Thus ¢ is an imbedding of (€2, 3?) into the space (P(H?(Q2)), F?). It is therefore dis-
tance decreasing and combining this with Proposition A4.2 we have obtained the following
estimate:

Proposition 4.1.6. For z,w € () we have

dist o(z,w) > arccos - ..

Proof of Theorem 4.1.4. Let zj, be a Cauchy sequence in €2 (with respect to the Bergman
metric). Suppose that z; has no accumulation point in €. It is easy to check that this is
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equivalent to the fact that z; — 9. Since (z) is a Cauchy sequence in P(H?(2)) which
is complete, it follows that there is f € H2(2) \ {0} such that t(zx) — (f). Therefore

f(z
ol = Lo SR g

as k — oo, which contradicts the assumption of the theorem. m

By the way, Proposition A4.3 gives the following lemma due to Pflug [Pfl]:

Lemma 4.1.7. Assume that §2 is bounded and let z, be a Cauchy sequence in ) with
respect to the Bergman metric such that z, — 9. Then one can find f € H*(Q), ||f|| = 1,
and \,, € C, |\g| =1, such that

in H*(Q) ask — 0o. m
Theorem 4.1.4 also easily implies the following:

Corollary 4.1.8. Let €2 be a bounded domain in C" such that lingQ kq(z) = oo and for

every zy € 0S) the space
{f € H*(Q): Tim [f(2)| < oo}
zZ—Zz0

is dense in H?(2) (this is for example the case if H*(2) is dense in H?(Q2)). Then Q is
Bergman complete.

Proof. Let Q3 z; — 2o € 9. For f € H?(Q2) by the assumption we can find fr € H*(1)
such that lim;_, | fx(2;)| < oo and limg_, || fx — f|| — 0. Then for every k

— &)

lim hm [ (Zj )|

It follows that

L)

z2—0) k’Q (Z)

=0

and we use Theorem 4.1.4. m

We will now prove several results relating the Bergman kernel and metric with the
pluricomplex Green function. The first one is essentially due to Herbort [Her] (see also
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[Chel]).

Theorem 4.1.9. If ) is a pseudoconvex domain in C" then we have

|f (w)]
< (o

foo dx ) ||f||L2({gQ,w§—1})7 w e Qu f S H2(Q)

Proof. We will use Theorem A5.3 with ¢ := 2ng and ¢ := —log(—g), where ¢ := g -
Since g is a locally bounded plurisubharmonic function in 2\ {w}, it follows from Theorem
2.1.9 that i0g A dg A (i00|z|?)" ! is a positive Borel measure on 2\ {w} and one can easily
deduce that dg € L?OC7(071)(Q \ {w}). Set

a:=0(f-yog)=[f7 0999 € L, 01 (),
where v € C%!((—00,0)) with 7/(t) = 0 near —oo will be specified later. We have
ia Ao =|f(7 0 g)%idg NDg < |fI(7  g)*g*i00n).
By Theorem A5.3 we can find u € L2 () such that du = o and

/ uPe2m9dx < 16 / PO 0 g)2gPe2"9d,
Q Q

If for a < —1 we take

0, —1<t<0,

we will get
ull2) < 4[fll2(gg<-1p)-

The function f-vyo0g—u is equal almost everywhere to a holomorphic f Moreover, since

e~ % is not locally integrable near w it follows that f(w) = y(a)f(w). We also have

11 < v@Ifll2croe—y + lullr2@) < (v(@) + DI fllz2gg<—1p)-

Therefore by (4.1.2)

S 1wl _

ko(w) — y(a)vka(w) ~ v(a)

and the desired estimate follows if we let ¢ — —00. =
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Theorem 4.1.10. For a bounded pseuudoconvex domain ) in C™ consider the following
conditions
i) Q is hyperconvex;
i) tim (g, < 1)) = 0:
iii) Q is Bergman complete;
iv) lim k = 00.
) Jim alw) = o0
Then i) =-ii) =iii) and ii) =iv).
Proof. Theorem 3.3.7 gives i) =ii). The implication ii) =-iii) follows immediately from

Theorems 4.1.4 and 4.1.9 and if we use Theorem 4.1.9 for constant functions then we get
i) =iv). m

The implication i) =-iv) in Theorem 4.1.10 is due to Ohsawa [Ohs]|. i) =-iii) was proved
independently in [BP] and [Her].

For n > 2 ii) does not imply i), as the following example shows. It is due to Herbort
[Her| who used it to show that iii) #i) in a much more complicated way.

Set

Q:={ze A, x A:|zn| <e Vnly
where A stands for the unit disc in C. Show that €2 is pseudoconvex but not hyperconvex.
For w € Q) denote g,, := g . Prove that
jwi | log |22
1 4 2|wy|? log e=1/@lwil)”

90,w(2) = log if 21| > 2fw|

and conclude that i) holds.

The next result, due to Chen [Che2] for n = 1, coupled with Corollary 4.1.8 implies
that iv)=-iii) holds in Theorem 4.1.10 for n = 1.

Theorem 4.1.11. Let Q and U be bounded domains in C™ such that QUU is pseudoconvex
with diameter R. Assume that U C B(zg,r). Then for every f € H?() there exists
F € H?(QUU) such that for every A > 1 we have

4
1F = fllz2 @) < (1 " @) 11280, B(r/ R )

Proof. For t < R set n(t) := —log(—logt/R) and ¥(2) := n(|z — 20|) for z € B(z0, R).
Then —e~? is plurisubharmonic and 9y A 9y < id0y. Fix p € (r, R) and define
0, s <n(r),
X(s) = M0 () < s < n(p),
1, s > 1(p).
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Then o :=9f € L2 (QU B(z9,1)), where

loc,(0,1)
f_{f70¢7 inQa
1o, in B(z,7).

By Theorem A5.3, applied with ¢ = 0 and h = |f[*(x' o ¥)? in QU U, we can find
u € L2(QUU) such that du = a and

16
ul2d\ < / | f2dA.
/QUU' IS G Jonsieon

It follows that there exists F' € H?(Q U U) such that F = F — u almost everywhere.
Moreover,

1E = flle2) < A =y o)|lr2) + llullL2@)

<(1+ 4 )||f\|
=\ T nlp) —a(r) ) B

It is now enough to take p := R(r/R)'/*. m
The following estimate for the Bergman distance was proven in [Blo3].

Theorem 4.1.12. Let 2 be a bounded pseudoconvex domain in C" and let w,w € §2 be
such that {gw,0 < -1} N{g~>, < —1} = 0. Then

. ~ ™ 4e”
dist Q(UJ,U)) Z 5 — arctan (1 + OO—d_m) .

fn xe®

Proof. Set f := Kq(-,w)//ka(w). Define also ¢ := 2n(g + g) and 9 := —log(—g), where
g = go,w and g := go . Let a, v and a be defined in the same way as in the proof of

Theorem 4.1.9, then
ia Na < [fP(y 0 9)°gi00% = x(g<1y| [ €910

Theorem A5.3 gives u € L? (Q) with Ju = o and

loc

/ lu|?e”?d) < 16/ |f|2e*™e™?d\ < 16",
Q {g9<-1}

since § > —1 on {g < —1} and ||f|| = 1. Therefore there exists holomorphic f equal to
(f-vog—u)/v(a) almost everywhere such that

4e™

(4.1.6) Il <1+ 20
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Moreover, since e~ % is not locally integrable near w and w, we have f(w) = f(w) and
F(w) = 0 (the latter one because g(@) > —1).

We have (f, f) = f(w)/\/ka(w) = 0. It follows that we can find an orthonormal basis
b0, 1, ... of H2(Q) such that ¢o = f and ¢, = f/||f||. Then

ka(w) = Z 5 (w)* = | £ (w) P+ 1711 7%)

and -
[Ka(w, @) _ [f(w)* _ _|If]?
ko(w)ka(w)  ka(w) = 14 ||f]]2

By Proposition 4.1.6

/1]

L+l

dist o (w, w) > arccos =T arctan 1711

It remains to use (4.1.6) and let a — —oc0. =

4.2. Separately analytic functions (being written)

4.3. Approximation of smooth functions (being written)

4.4. Complex dynamics (being written)
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Appendix

A1l. Lipschitz continuous functions
The following two results can be found in [Loj]:

Theorem A1l.1. (Rademacher) A Lipschitz continuous function defined on an open set
in R™ is differentiable in the classical sense almost everywhere. m

Theorem A1.2. If u is a Lipschitz continuous function of one variable defined in a
neighborhood of an interval [a,b], then

b
u(b) — u(a) = / o' (t)dt. m

Proposition A1.3. If u € Lip(Q2) and ¢ € C}(Q) then

/Dj(ugo)d)\zo, ji=1,...,n.
Q

Proof. By partition of unity we may assume that supp ¢ C [a1,b1] X -+ X [apn,b,] C Q
and j = n. By Theorem A1.2

[ 0stwe @1z, e =0

n

for all zy € [ag,b], k =1,...,n—1. The proposition now follows from the Fubini theorem.
»

Proposition Al1.4. Let f be continuous and u Lipschitz continuous such that D,u = f
almost everywhere. Then D,u = f everywhere.
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Proof. We may assume that v and f are defined in a neighborhood of I, where I = I’ x I,
is an open cube. For some ty € I,, set

v(z) = /txn f(@' tydt, z= (2 2,)€l,

0

and w := u —v. Then w is continuous, w(z’,-) is Lipschitz continuous for every z’ € I’
and D,w = 0 almost everywhere in I. It is enough to show that w is independent of x,,.
The proof of Proposition A1.3 gives

Oz/goandA:—/angpd)\, o e Cy(I).
I I

For test functions of the form ¢(z) = 1 (2')p2(z,) we obtain

// 901(:5')/] w(x', z,) s (2, )dr,dA(z") = 0.

n

Thus for all 2/ € I’ and ¢y € C3(I,)

/ w(x', z,)ph (2, )dr, = 0.
I,

By Theorem A1.2 (w(2’,-))" = 0 for all 2’ € I’ and thus w(a’,-) is constant. m

Proposition A1.5. Assume that u € C1(Q) and |D?*u| < M. Then

lu(z + h) +u(z — h) — 2u(z)| < M|h|?, = €Q, |h| < dist (z,00).

Proof. If u is C? then it follows easily from the Taylor formula with the Lagrange remain-
der. The general case may then be obtained by approximation. m

A2.Some lemmas on measure theory and topology

Lemma A2.1. Let u; be a sequence of Radon measures on an open 2 C R" converging
weakly to a Radon measure p. Then
i) If G C Q is open then p(G) < liminf p;(G);
j—00
i) If K C 2 is compact then pu(K) > limsup p;(K);

J—00

iii) If E € Q is such that u(OF) = 0 then p(F) = lim u,(E).
j—o0
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Proof. i) Let L be a compact subset of G and let ¢ € Cy(G) be such that ¢ >0, p =1
on L. Then

u(L) < plp) = lim () < lim 1 (G).

Interior regularity of u gives i).
ii) Let U be an open neighborhood of K and let ¢ € Cy(U) be such that ¢ >0, p =1
on K. Then

p(U) = plp) = lim p(p) > lim ().

Exterior regularity of u gives ii).
iii) This is an obvious consequence of i) and ii). m

Lemma A2.2. Let f; be a decreasing sequence of upper semicontinuous functions con-
verging to f and let j1; be a sequence of nonnegative Borel measures converging weakly to
w. If fjp; — v weakly, then v < fpu.

Proof. For some jj let g be a sequence of continuous functions deacreasing to f;,. Then
for j > jo we have fiu; < fiop; < grpj, hence v < gpu. The Lebesgue monotone
convergence theorem yields v < fjjpand v < fu. m

The next result is known as the Choquet lemma.

Lemma A2.3. Let {u,} be a family of upper semicontinuous functions on an open 2 C R"
locally uniformly bounded above. Then there exists a countable subfamily {u., } such that

(sup, ta)” = (SUp; o, )"

Proof. Let B; be a countable basis of topology in {2 and set u := sup,, uo. For every j we
may find a sequence zj; € Bj such that supg, u = supy, u(z;i). For every j and k there is
a sequence of indices oy such that u(zjr) = sup; a,,, (zjx). Set v :=sup, ;. ; Ua;,,- Then

supv > s%pfu(zjk) > S;l%) Ug; (Zjk) = sipu(zjk) = sup u,
J ) J

thus v* > v* and the lemma follows. m

Lemma A2.4. Assume f,g: (—00,0) — (—1,0) are continuous and such that f < g <0
and lim;_,g— f(t) = 0. Then there exists a convex, increasing x : (—o00,0) — (0, +00)
such that lim;_g- x(t) = +o00 and xog < yo f + 1.

Proof. For s < 0 set h(s) := min{f(¢) : g(t) > s}. Then h(s) < s and h(s) 710 as s T 0.
One can find g : (—00,0) — (0, +00) such that g(s) > s —h(s) >0 and g(s) | 0 as s T 0.

Set
1 if t< -1,

t) = ¢
x() 1+/ L g i —1<t<o
—19(3)
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Then y is increasing and, since x'(t) = 1/¢(t) is increasing for ¢ > —1, x is convex.
Therefore for s = ¢g(t) > —1 we obtain

X(9(t) < x(h(s)) + x'(s)(s = h(s)) < x(f(t)) +1

and the lemma follows. m

A3. The Choquet capacitability theorem

If X is a topological space then a set function ¢ defined on all subsets of X taking its
values at [0, +00] is called a generalized capacity if it satisfies the following conditions

1) If £ C E5 then C(El) < C(EQ),

ii) If E; T E then c¢(E;) T c(E);

iii) If K; | K and K; are compact then c¢(K;) | ¢(K).

From this point on we assume that all considered topological spaces are locally com-
pact and have a countable basis of topology. The main goal of this section is to prove the
following theorem due to Choquet.

Theorem A3.1. Let ¢ be a generalized capacity on X. Then for every Borel subset E of
X we have

(A3.1) c(E)=c«(F) = sup c(K).
KCFE, K compact

A subset of X is called F,s if it is a countable intersection of F, subsets. The main
tool in the proof of Theorem A3.1 will be the following fact.

Theorem A3.2. Let FE be a relatively compact Borel subset of X. Then there exists a
compact topological space Y, an F,5 subset A of Y and a continuous mapping f : Y — X
such that f(A) = E.

First we shall show how Theorem A3.2 implies Theorem A3.1.

Proof of Theorem A3.1. There exist compact subsets K; increasing to X, therefore
c(ENK;)Tc(E). Thus we may assume that E is relatively compact. Let A,Y and f be
as in Theorem A3.2. One can easily see that c o f is a generalized capacity on Y, so we
may assume that F is F,5 and X is a compact space. Write

E=(\F, F=J K

i>1 k>1
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where K, are compact and increasing in k. Fix a < ¢(E). We may write
E=]J <K1kﬂ ﬂFJ)
k>1 §>2

so there is k1 such that ¢(FE) > a, where

By = K, 0[] F;.

Jj>2
For every [ > 1 we can find inductively k; > 1 such that the sets

E; :Klkl ﬂ"'mKlkl N ﬂ Fj
j>l+1

are decreasing and c(E;) > a. If we set K := (), Kjx,, then

¢(K) = lim ¢(Kuy, N---NKy,) > lim o(E) > a

and the theorem follows. m

It remains to prove Theorem A3.2. First we need some simple properties of Fys
subsets.

Proposition A3.3. i) If A is an F,5 and B a closed subset of X then AN B is Fys;
ii) If A; are F,5 subsets of compact spaces Y;, j =1,2,..., then [[ A, is F,s in [[Y};

Proof. i) It is enough to observe that
<ﬂUKkl) NB= ﬂUKkl N B.
kol kol

ii) We may write

Aj = ﬂ K,
ko1

where K, are compact in Y;. One can easily show that

[T4 = U Ko x Kiga % Yipr x Yo <. m
k oli,..lk

Proof of Theorem A3.2. The sets £ € X satisfying the hypothesis of the theorem we
will call K-analytic. Let X’ be an open, relatively compact subset of X. Set

A:={FEC X': E and X'\ E are K-analytic}.
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If E C X' is open then E and X'\ E are F,; in X', hence A contains all open subsets
of X'. Therefore, it remains to show that A is a o-algebra. Assume that E; C X' is a
sequence of K-analytic sets. We have to show that |J £; and [ E; are K-analytic.

First, we claim that for F € X to be K-analytic it is sufficient that the mapping f
is defined only on A. Indeed, in such a case by A’ denote the graph of f (over A) and
let Y’/ be the closure of A’ in the compact space Y x E. Thus Y’ is compact and A’ is
closed in A x E, hence A’ is F,5 in Y’ by Proposition A3.3.i and ii. If f/ : Y’ — X is the
projection onto E, then f’ is continuous and f/(A’) = E which proves the claim.

Let A; be Fy5 in a compact space Y; and let f; : Y; — X be continuous and such
that f;(A;) = E;. We may write

Aj = mUKjkla
ko1

where Kjj; are compact in Yj. The disjoint union Y} := Yj U {y°} is compact and so is
Y :=]]Y]. Set

A= W o 7 Ay = U o o x B x () <

k lj

so that A can be treated as a disjoint union [ A; and A is F,5 in Y. Now the mapping
f=11fj: A— X defined by

f(yoa"'7y07yj7y07"') :fj(yj)v Yj EAja j: 1727"'

is continuous, hence f(A) = |J E; is K-analytic.
Now set

A={y=(,y2...) €[4 : Alp) = faly2) =... }.

Then A is closed in [[ A;, hence it is an Fi,5 subset of Y := [[Y;. The mapping f: A — X
given by
f(y) = fl(@/l) = fz(yz) = ...

is continuous, thus f(A) =) E; is K-analytic. m

A4.Projective spaces over Hilbert spaces

Let H be an arbitrary Hilbert space over C. Set H, := H \ {0}. By P(H) we denote
the projective space over H, that is the set of all complex lines in H containing the origin.
We have the natural projection

mH, > f— (f) € P(H),
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where by (f) we denote the line given by f. Let

Hpy = ()" ={geH: (g, f) =0}

and by U, denote the set of lines in H that are not perpendicular to p € P(H), that is

Uipy = {(9) €P(H) : (g, f) # 0}.
Every f € H, gives a map

Op: Hipy 5w (f +w) € Uy,.
It is bijective and its inverse is given by

||f1I?
(9, )

For f,g € H, we also have ®; = ®,0 L, on @;1(U<f> NUyy), where the mapping

gl
(w+f,9)
is a smooth diffeomorphism. The mappings ® ¢ give therefore P(H) a structure of a complex
manifold.

For p € P(H) the tangent space T,P(H) is defined as S/ ~, where S is the class of
smooth curves 7 : (—¢,e) — P(H) with v(0) = p and v ~ 7 if and only if (<I>JI1 o) (0) =
(CD]?l on)’(0), where f € H \ H, (then p € U ). The definition of the relation ~ is
independent of the choice of such an f because

(@51 07)'(0) = (Ly,g 0 @7 07)(0) = Ly (27 (p)) 0 (2 09)'(0),  f.g € H\ Hy.
We then have

71 ((g) = g—1f (9 €Uy

Lf7g:H<f>9wr—> (w—l—f)—g€H<g>

m(f): H> X — [(f +tX)] € T\nP(H), f€ H.,.
On H, we define the metric form P? by

92 X2 X, )
P2(f,X) = —log||f + \X]||? = —
(f, X) = o a5 o8l AR T AR

The Fubini-Study metric form F2? on P(H) is then given as the push-forward of P? by n:
FAx(f),n'(f)-X) =P*(f.X), feH., XeH.

feH, XeH.

Proposition A4.1. The form F? is well defined.

Proof. Assume that 7(f) = w(g) and 7'(f).X = 7'(9).Y. Then g = Af for some X\ € C,
and thus 7'(g) = A~ 7'(f), hence 7/(f).(Y — AX) = 0. Since

(X, f)
A1

(7)) (m(H)-(x'(f)-X) = (@  om) ()X = X — f, feH., XeH,
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it follows that
kerw'(f) = (), f € H.

We can therefore find a € C such that Y = AX + af. Then
AX 2 INX 22
P2 V) = | 2JranH X ,f>2+a|Jlf|||
AL AR
X1 KX AP

s 19l
=P%(f,X). m

Since
(w): Hipy 3 X — [(f +w+tX)] € Ty P(H), f€H, we Hy,
in the local coordinates given by ®; we have

L (w,Y) = FX(@g(w), @4 (Y)) = P*(f +w,Y)

)
= —1 2 \Y|?
75 OB + o+ XY )

1Y])2 (Y, w)[?
= — ., fEeH, wYe€Hs.
I+ [[wll2 — ([F]2 + [[w][2)? )

A=0

If n : [0,1] — P(H) is a continuous and piecewise smooth curve then its length is given
by

Wﬁ=£~ﬂmwmﬁnﬁ

and the distance d(x,y) between z,y € P(H) is defined as the infimum of I(n) taken over
all such n with n(0) =z, n(1) = y.

Proposition A4.2. For f,g € H, we have

(£, 9)]
d((f),(g)) = arccos
11 gl
Proof. We may assume that ||f|| = ||g|]| = 1. Let n : [0,1] — P(H) be a continuous,

piecewise smooth curve with 7(0) = (f), (1) = (g). First assume that n([0,1]) C Uy.
Set 17 := <I>JI1 on:[0,1] — Hy, so that 5(0) = 0, (1) =: w. Then

RO EToENY e
“m‘l<uwmw a+mmm9 wz [ e
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Set x(t) := ||/ (t)||. Then

Re (7(0).7(1) _ -

X1) = =R < IO

Therefore

Loy(@) de
l(n) > /0 1X+(—X)(t)2 = arctan ||w|| = arccos|(f, g)]

(the latter inequality follows from the fact that
(£ 9)] = (L+ [l 2)722).

f n([0,1]) ¢ U then let ¢ty € (0,1] be a maximal number satisfying [0,t9) C U. Then
( 0) ¢ U and similarly as before

1) = [ F (o). O)de > G > wwccos (1.

On the other hand, one can easily check that the curve

n(t) = (1 =g, /)f +tg], t€0,1],

has the required length. =

Proposition A4.3. Assume that (fy) — (f) in P(H), fx,f € H.. Then we can find
A € C, such that \pfr — f in H.

Proof. Set
N [ fre, £
k-

S D el
Then

[{fe, SIS

—0
|| fr]]

IAkfie = FIP = APl = 2Re (i, £)) + 1112 = 211711 - 2

by Proposition A4.2. m

A5. Some variations of the Hormander [?-estimate

First we will sketch the proof of a generalization of [Horl, Lemma 4.4.1] in case
p=q=0. As we will see, one needs to follow [Hérl] with only slight modifications.
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Theorem A5.1. Assume that ¢ € PSH(S2), where Q is a pseudoconvex domain in C".
Let a € L7 (0.1)(§2) be such that o = 0 and

(A5.1) ia A < hiddy

for some nonnegative function h € L, () such that the right hand-side of (A5.1) makes
sense as a current of order 0 (this is always the case if h is locally bounded). Then there

exists u € L? () with Ou = « and

loc

(A5.2) /|u|26_¢’d)\§/he_“°d)\.
Q Q

Sketch of proof. If the right hand-side of (A5.2) is not finite it is enough to apply [Horl,
Theorem 4.2.2], we may thus assume that it is finite and even equal to 1. We first consider
the case when ¢ is smooth (then of course the right hand-side of (A5.1) is a current of order
0 for every h € L} (€)). We follow the proof of [Hérl, Lemma 4.4.1] and its notation: the

loc
function s is smooth, strongly plurisubharmonic in © and such that Q, := {s < a} € Q

for every a € R. We fix a > 0 and choose 1, € C§°(f2), v =1,2,..., such that 0 <7, <1
and Qu41 C{n, =1} T Qasv T oo. Let ¢ € C°(Q) vanish in Q, and satisfy |0, |> < e,
v=1,2,...,and let x € C*°(R) be convex and such that x = 0 on (—o0,a), xyos > 2¢
and x’ 0 5i00s > (1 + a)|0y|?i00|z|2. This implies that with ¢’ := ¢ + x o s we have in
particular

(A5.3) i00¢’ > i00¢ + (1 + a)|0v|*i00|z|>.
The 0-operator gives the densely defined operators T' and S between Hilbert spaces:
T S
LQ(Qv 901) — L%()J)(Q? 302) — L%O,Q) <Q7 903)7

where ¢; :=¢' + (7 —3)¢, j = 1,2,3. (Recall that, if

’
F = Z Frgdzy NdzZg € L%oc,(p,q)(Q)’

then /
|F|? = Z IFyxl?,
JK

L%p,q)(Q’@ ={Fe L?oc,(p,q)(Q) : HFHi = /Q |F|?e”%d\ < oo},

’ —
<F, G><p = o Z FikGrre Pd\, F,G e L%p’q)(Q, QO))
JK
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For f=3", fjdz; € C5% 1)() one can then compute

df;  Ofk If; af' af},
2 _ gl  9Jk 9J5 O9Ji 9Tk
(A5'4) |Sf| N Z 0% 0Z; Z ‘ sz 6Ek 0z;

j<k J J
and o0

VT f = — Z%‘fj - ij87’
J J

where 5 3 50

o o Y oy v _ ¥

djw:=e 7% (we™% ) = oz w@zj :

Therefore
(A5.5) !me (1+a™He® | T fI + (1 + a)| f1?|09*.

Integrating by parts we get

, 82y af; Of ,
6~f~28_“"d)\:/ ( ff + =L k)e_‘Pd)\.
/Q@m 2 G et 55
Combining this with (A5.3)-(A5.5) we arrive at

82 /
A5.6 AN < L+ a TR, + 1SS
as6) [ S s s (o a T + IS,

If we write v = 3, a;dz; then

N = E ajapidzy N\ dzy
J.k

and by (A5.1)

%y -
a;fil> <h —fi [k
DR TR pre Vil

Hence, from the Schwarz inequality, (A5.6) and from the fact that ¢ — 2¢py < —¢’ we
obtain

[ e l* < X+ a™DITAIZ, + ISFIE,
for all f € €50 1)(€2) and thus also for all f € Dr- N Dy (recall that we have assumed
that the right hand-side of (A5.2) is 1). If f/ € L(o 1

S then it is also orthogonal to the range of T" and thus T* f* = 0. Moreover, since Sa = 0,
we then also have (a, f’),, = 0. Therefore

|<a/af><,02|§ V1+a_l||T*f||ﬁp1= fEDT*-
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By the Hahn-Banach theorem there exists u, € L*(Q, 1) with ||ug||,, < V1+a~! and

<a7f><,02 = <ua7T*f><p17 f S DT*'

This means that Tu, = a and, since @7 > ¢ with equality in €2,, we have
/ |ua|26_‘Pd)\ <l4+a '
Qq

We may thus find a sequence a; T oo and u € LZQOC(Q) such that u,; converges weakly to

win L3(Qq, ) = L?(Q,) for every a. This proves the theorem for smooth ¢.

Now assume that ¢ is strongly plurisubharmonic (but otherwise arbitrary, that is
possibly even not locally bounded). By the Radon-Nikodym theorem there exists 3 =
>k Bikidzj A dzy € Llloc,(1,1)(Q) such that 0 < 8 < i90¢ and ia Aa < hf3. For ¢ > 0
let a(e) be such that ¢, := ¢ * p. € C®(Qy(e)). If (¢2*) denotes the inverse matrix of
(0% /02;0z)) then h. = Dk ©I*a ;. is the least function satisying ia A @ < hei00¢p. .
By the previous part we can find u. € LZQOC(QQ(E)) such that du. = « in Qq(c) and

/ |u5]26_“’5d)\§/ hge_%d)\g/ hee %dA.
Qa(s) Qa(s) Qa.(s)

We have (. := % p. < iaégos and there is a sequence ¢; | 0 such that the coefficients of
B., converge pointwise almost everywhere to the respective coefficients of 3. Therefore

m he, < im Y BFa o =) p*a o < b,

l—o0 l—o00 & -
gk J:k

where (87%) and (82%) denote the inverse matrices of (3;x) and (8,1 * pe), respectively. By
the Fatou lemma we thus have

lim lug, [P~ ?=rd) < 1.
l—o0 Jq )
ale]

Since ¢, is a decreasing sequence, we see that the L? norm of u., over €2, is bounded for
every fixed a. Therefore, replacing ¢; with its subsequence if necessary, we see that uy,

converges weakly in , for every a to u € L?, (). For every a and § > 0 we then have

/ lu|?e"?1dA <1+ 6
Qq

which completes the proof for strongly plurisubharmonic ¢.

If ¢ is not necessarily strongly plurisubharmonic then we may approximate it by
functions of the form ¢ 4 £|z|2. Note that ia A @ < hidd(¢ + £|z|?) and the general case
easily follows along the same lines as before. m
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The next result is due to Berndtsson [Berl]| (see also [Ber2]).

Theorem A5.2. Let 2, ¢, a and h be as in Theorem A5.1. Fix r € (0,1) and assume
in addition that —e=%/" € PSH(S). Then for any ¢ € PSH(Q) we can find u € L?, ()

= loc
with Ou = o and )
2= =1
ul“e dh < —/ he dA.
f 1 A= Ve Ja

Proof. Approximating —e~%#/" and 1/ in the same way as in the proof of Theorem A5.1
we may assume that ¢ and ¢ are smooth up to the boundary. Then we have in particular
L?(Q) = L?(Q, ap + by) for real a,b and —e~#/" € PSH() means precisely that

i0p A Op < 1i00¢.
Let u be the solution to du = o which is minimal in the L2(€,) norm. This means that
/Qufe_wd)\ =0, feH*Q).
Set v := e¥u. Then
/Q vfe PTVdN =0, fec H*(Q),
thus v is the minimal solution in the L?(£2, ¢ + 1) norm to dv = 3, where
B = 0(eu) = e (a + udyp).
For every ¢t > 0 we have
iBAB <1+t iana+ (14 t)|ul?i00y]

< e[+t Hh+ (1 + t)r|u?)iode

<e2?[(1+tHh+ (1 + t)r|ul]i0d (¢ + ).
Therefore by Theorem A5.1

/ '“'%MC“:/ ofem P dA < (14470 / he? = dA + (14 t)r / [u2eP =% dA.
Q Q Q O

For t = r~1/2 — 1 we obtain the required result. m

Applying Theorem A5.2 with » = 1/4 and ¢, replaced with ¢/4,1 + ¢/4, respec-
tively, we obtain the following estimate essentially due to Donnelly and Fefferman [DF].

Theorem A5.3. Let €2, ¢, a and h satisfy the assumptions of Theorem A5.1. Assume
moreover that —e~% € PSH(Q)). Then for any 1 € PSH(Q) we can find u € L} () with

j loc
Ou = o and
/ lul2e”Yd\ < 16/ he d\. m
Q Q
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Some open problems

Problem 1. Assume that a domain 2 € C" is such that each of its boundary points
admits a local weak plurisubharmonic barrier (that is for every zg € 0f) there exists a
neighborhood U of zp and u € PSH(Q2 N U) such that v < 0 and lim,_,,, u(z) = 0). Is Q
hyperconvex? Note that Theorem 1.4.7 would be a direct consequence of a positive answer.

Problem 2. Let (2 be a bounded pseudoconvex domain in C" admitting a local weak
plurisubharmonic barrier at some zg € 9. Does there exist a global (defined on ) weak
plurisubharmonic barrier at zo? A solution in the affirmative would solve Problem 1, since,
using the Hartogs figures, one can show that a domain from Problem 1 is pseudoconvex.

Problem 3. Is being an unbounded maximal plurisubharmonic function a local property?

Problem 4. Let P = A? be the unit bidisk. For (z,w) € OP set f(z,w) := (Re z)?(Rew)?
so that f is subharmonic on every analytic disk embedded in @P. Therefore, by Theorem
2.3.2, u:=upp € PSHNCH(P)NC(P). One can show that u = 0 on the set {(z,w) €
P:|z+w| < |1 —zwl|}. It can also be proved that for every € > 0 the function

g? 24w |2
UE(Z’w):Z 6+1—zw’ -1

satisfies v. < v in P. An elementary computation then gives for ¢ € (0, 1)

(t,t) - e
ult,
> 27 (202 - (=229 itz Va1

This means that u ¢ C®(P). We conjecture that in fact u ¢ C?(P).

Problem 5. Are the product formulas (3.1.3) and (3.2.1) (without regularizations) true
for arbitrary sets K7

Problem 6. Let 2 be a bounded hyperconvex domain in C™. Assume that sequences
zj,w;j € £ tend to 29 € Q,wp € 91, respectively. Does it follow that 90,0, (2) — 07 In
other words, is it true that gq is continuous at the points from 92 x  (if we assume that
it vanishes there)?
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