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Introduction

This manuscript is a draft version of lecture notes of a course I gave at the Jagiellonian
University in the academic year 1997/98. The main goal was to present the fundamental
results of the pluripotential theory like Josefson’s theorem on the equivalence between
locally and globally pluripolar sets and Bedford-Taylor’s theorem stating that negligible
sets are pluripolar. The main tool is the theory of the complex Monge-Ampère operator
developped by Bedford and Taylor in the 70’s and 80’s. Relying on their solution of the
Dirichlet problem in [BT1] they wrote a breakthrough paper [BT2] which is where the
most important results of these notes come from. Some of them appeared a little earlier
in [Bed1] and [Bed2].

The main inspiration in writing these notes were Demailly’s excellent articles [Dem2]
and [Dem3]. I was fortunate to start learning the subject during my student times from
a Demailly preprint survey which was later expanded into two parts [Dem2] and [Dem3].
Unfortunately, [Dem3] has never been published! One of Demailly’s contributions was a
major simplification of the solution of the Dirichlet problem for the homogeneous Monge-
Ampère equation from [BT1].

The material presented in the first three chapters almost coincides with the core of
Klimek’s monograph [Kli2]. However, many proofs have been simplified. The reader is
assumed to be familiar with the basic concepts of measure theory, calculus of differential
forms, general topology, functional analysis and the theory of holomorphic functions of
several variables. (One should mention that we make use of the solution of the Levi
problem only in the proof of Theorem 1.4.8 which is later used to prove Theorem 3.2.4.)

In Chapter I we present a self-contained exposition of distributions, subharmonic and
plurisubharmonic functions, regular domains in Rn and Cn as well as the theory of non-
negative forms and currents. The exposition is by no means complete, we only concentrate
on results that will be used in the next chapters. The presentation of distribution theory
in Section 1.1 is mostly extracted from [Hör2]. The main result, Theorem 1.1.11, is a weak
version of the Sobolev theorem and states that functions with locally bounded partial
derivatives are Lipschitz continuous. This is later needed in the solution of the Dirichlet
problem for the complex Monge-Ampère operator. In section 1.2 we prove basic facts con-
cerning subharmonic functions and regular domains in Rn. The most important one for
us is due to Bouligand and asserts that a boundary point admitting a weak subharmonic
barrier is regular (Theorem 1.2.8). This is one of rather few results from potential theory
in Rm, m ≥ 3, that we will use in Cn=̃R2n. One of the sources when writing Section 1.2
was Wermer’s exposition [Wer]. In Section 1.3 we collect results on nonnegative currents,
the results coming mostly from Lelong’s exposition [Lel] and [HK]. In Section 1.4 we prove
the basic properties of plurisubharmonic functions. Then we exploit the concept of the
Perron-Bremermann envelopes and a notion of a maximal plurisubharmonic function. We
characterize bounded domains in Cn admitting strong and weak plurisubharmonic barriers
(resp. B-regular and hyperconvex domains).

In Section 2.1 we define the complex Monge-Ampère operator for locally bounded
plurisubharmonic functions and show the basic estimates as well as the continuity of the
operator with respect to decreasing sequences. The principal result of Section 2.2 is the
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quasi-continuity of plurisubharmonic functions with respect to the relative capacity. Sev-
eral applications are then derived, including the continuity of the complex Monge-Ampère
operator with respect to increasing sequences, and the domination principle. The Dirichlet
problem is solved in Section 2.3.

In Chapter III we prove Josefson’s theorem and Bedford-Taylor’s theorem on negligible
sets and then use them to present the theory of three kinds of extremal plurisubharmonic
functions: relative, global and the pluricomplex Green function. It should be pointed out
that results like Propositions 3.1.3, 3.2.1, 3.3.1, 3.3.2, 3.3.3, Theorems 3.2.4, 3.2.5, 3.3.4
and parts of Propositions 3.1.9, 3.2.6, Theorems 3.2.3, 3.2.9 are proven in an elementary
way, that is without using Chapter II.

We have included a number of exercises. If they are double-boxed, then it means that
the result will be used later on.

In the appendix we collect some elementary facts. We have also included a list of open
problems. Most of them arose while preparing the course but they are certainly not meant
to be the most important questions or to represent the current development of the theory.

One more chapter on applications of pluripotential theory in complex and non-complex
analysis is planned in some future...

The course which these notes are based on was given at the Jagiellonian University
while I had a special research position at the Mathematical Institute of the Polish Academy
of Sciences and thus no other teaching duties. This introduction was written during my
stay at the Mid Sweden University in Sundsvall. I would also like to thank U. Cegrell,
A. Edigarian, S. KoÃlodziej, P.Pflug, E. Poletsky, J. Siciak and W.Zwonek for consultations
on some problems related to the present subject.

Sundsvall, May 1998

Author’s address:
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: blocki@ im.uj.edu.pl
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I. Preliminaries

1.1.Distributions and the Laplacian

Let Ω be an open set in Rn. On a vector space Ck
0 (Ω), k = 0, 1, 2, . . . ,∞, we introduce

a topology as follows: a sequence {ϕj} is convergent to ϕ iff
i) there exists K b Ω such that supp ϕj ⊂ K for all j;
ii) for all multi-indices α ∈ Nn with |α| ≤ k we have Dαϕj −→ Dαϕ uniformly (if k = ∞

then for all α).
If D(Ω) = C∞0 (Ω) with this topology then by D′(Ω) we denote the set of all (complex)
continuous linear functionals on D(Ω) and call them distributions on Ω. We say that
u ∈ D′(Ω) is a distribution of order k if it can be continuously extended to Ck

0 (Ω).

Theorem 1.1.1. Let u be a linear functional on C∞0 (Ω). Then u is a distribution iff for
all K b Ω there is k and a positive constant C such that

(1.1.1) |u(ϕ)| ≤ C
∑

|α|≤k

‖Dαϕ‖K , ϕ ∈ C∞0 (Ω), supp ϕ ⊂ K.

u is a distribution of order k iff (1.1.1) holds with this k for all K b Ω.

Proof. That (1.1.1) implies that u is a distribution is obvious. Assume that u ∈ D′(Ω)
and that (1.1.1) does not hold for some K b Ω. Then for every natural j there exists
ϕj ∈ C∞0 (K) with

|u(ϕj)| > j
∑

|α|≤j

‖Dαϕj‖K

and u(ϕj) = 1. Then for any α and j ≥ |α| we have |Dαϕj | < 1/j. Thus ϕ −→ 0 in
C∞0 (Ω) which is a contradiction. Similarly we prove the second part of the theorem.

If Ω′ is an open subset of Ω and u ∈ D′(Ω) then the restriction u|Ω′ is well defined
by the natural inclusion C∞0 (Ω′) ⊂ C∞0 (Ω). Being a distribution is a local property as the
following result shows:

Theorem 1.1.2. Let {Ωj} be a an open covering of Ω. If u, v ∈ D′(Ω) are such that
u = v on Ωj for every j, then u = v in Ω. On the other hand, if uj ∈ D′(Ωj) are such that
uj = uk on Ωj ∩ Ωk then there exists a unique u ∈ D′(Ω) such that u = uj on Ωj .
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Proof. Partition of unity gives ϕj ∈ C∞0 (Ω) such that supp ϕj b Ωj , the family {supp ϕj}
is locally finite and

∑
j ϕj = 1 in Ω. For u ∈ D′(Ω) and ϕ ∈ C∞0 (Ω) we have

u(ϕ) = u

(∑

j

ϕjϕ

)
=

∑

j

u (ϕjϕ)

since the sum is in fact finite. This proves the first part. If uj ∈ D′(Ωj) and ϕ ∈ C∞0 (Ω)
then we set

u(ϕ) =
∑

j

uj (ϕjϕ) .

One can easily show that u ∈ D′(Ω). Then for ϕ ∈ C∞0 (Ωk) we have ϕjϕ ∈ C∞0 (Ωj ∩ Ωk)
and

u(ϕ) =
∑

j

uj (ϕjϕ) =
∑

j

uk (ϕjϕ) = uk

(∑

j

ϕjϕ

)
= uk(ϕ).

The uniqueness follows from the first part.

By the Riesz representation theorem (see [Rud, Theorem 6.19]), distributions of order
0 can be identified with regular complex measures by the following

u(ϕ) =
∫

Ω

ϕdµ, ϕ ∈ C0(Ω).

Similarly, nonnegative distributions (that is u(ϕ) ≥ 0 whenever ϕ ≥ 0) are in fact nonneg-
ative Radon measures (see [Rud, Theorem 2.14]). (Here it is even enough to assume that
u is just a nonnegative linear functional on C∞0 (Ω).)

A function f ∈ L1
loc(Ω) defines a distribution of order 0:

uf (ϕ) :=
∫

Ω

fϕdλ, ϕ ∈ C0(Ω).

Here λ denotes the Lebesgue measure in Rn.

Partial derivatives of a distribution are defined as follows:

(Dju)(ϕ) := −u(Djϕ), j = 1, . . . , n, ϕ ∈ D(Ω).

Then Dju ∈ D′(Ω). Integration by parts gives Djuf = uDjf for f ∈ C1(Ω) and thus the
differentiation of a distribution is a generalization of a classical differentiation.

If u ∈ D′(Ω) and f ∈ C∞(Ω) then we define the product

(fu)(ϕ) := u(fϕ), ϕ ∈ C∞0 (Ω).
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Then fu ∈ D′(Ω). The same definition applies if u is a distribution of order k and
f ∈ Ck(Ω) - then fu is a distribution of order k. One can easily show that

Dj(fu) = fDju + Djf u.

Let ∆ =
∑

j D2
j be the Laplace operator.

Proposition 1.1.3. If Ω is a bounded domain in Rn with C2 boundary and u, v ∈ C2(Ω)
then ∫

Ω

(u∆v − v∆u) dλ =
∫

∂Ω

(
u

∂v

∂n
− v

∂u

∂n

)
dσ.

Proof. The Stokes theorem gives∫

∂Ω

(
u

∂v

∂n
− v

∂u

∂n

)
dσ =

∫

∂Ω

〈u∇v − v∇u, n〉 dσ

=
∫

Ω

div(u∇v − v∇u) dλ =
∫

Ω

(u∆v − v∆u) dλ.

For a function u(x) = f(|x|), where f is smooth, we have Dju(x) = xjf
′(|x|)/|x| and

∆u(x) = f ′′(|x|) + (n− 1)f ′(|x|)/|x|. The solutions of the equation y′+ (n− 1)y/t = 0 are
of the form y(t) = Ct1−n, where C is a constant. For t ≥ 0 define

Ê(t) :=

{
1
2π log t, if n = 2
− 1

(n−2)cn
t2−n, if n 6= 2,

where cn is the area of the unit sphere in Rn. Note that for t > 0 Ê′(t) = 1/σ(∂Bt), where
Bt = B(0, t).

Theorem 1.1.4. Set E(x) := Ê(|x|). Then E ∈ L1
loc(Rn) and DjE = xj |x|−n/cn ∈

L1
loc(Rn) as a distribution, j = 1, . . . , n. E is the fundamental solution for the Laplacian,

that is ∆E = δ0, where
δ0(ϕ) = ϕ(0), ϕ ∈ C0(Rn)

is called the Dirac delta.

Proof. On Rn \ {0} E is smooth and we have DjE = xj |x|−n/cn and ∆E = 0 there. For
ϕ ∈ C∞0 (BR) integration by parts gives

DjE(ϕ) = −E(Djϕ) = − lim
ε→0

∫

BR\Bε

E Djϕdλ

= lim
ε→0

(∫

BR\Bε

ϕ(x)xj |x|−n/cndλ(x) +
∫

∂Bε

E ϕ njdσ

)

=
∫

BR

ϕ(x)xj |x|−n/cndλ(x),
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since limε→0 σ(∂Bε)Ê(ε) = 0. Therefore DjE = xj |x|−n/cn. Similarly, by Proposition
1.1.3

∆E(ϕ) = lim
ε→0

∫

BR\Bε

E∆ϕ = lim
ε→0

∫

∂Bε

(
ϕ

∂E

∂n
− E

∂ϕ

∂n

)
dσ

= lim
ε→0

1
cnεn−1

∫

∂Bε

ϕ = ϕ(0).

Exercise i) Let Ω be a bounded domain in Rn with C1 boundary. Show that DjχΩ =
−njdσ, where χΩ is the characteristic function of Ω, nj is the j-th coordinate of the outer
normal of ∂Ω and dσ is the surface measure of ∂Ω.

ii) Show that
∂

∂z

(
1
z

)
= πδ0.

If u ∈ L1
loc(Ω) and v ∈ L∞0 (Rn) then

(u ∗ v)(x) =
∫

u(y)v(x− y)dλ(y) =
∫

u(x− y)v(y)dλ(y)

The integration is in fact over the set {x} − supp v and we only take those x for which
{x} − supp v ⊂ Ω.

For a test function ϕ we then have

(u ∗ v)(ϕ) =
∫ ∫

u(y)v(x− y)dλ(y)ϕ(x)dλ(x)

=
∫ ∫

v(x)ϕ(x + y)dλ(x)u(y)dλ(y)

= u
(
(̃v ∗ ϕ̃)

)
,

where ϕ̃(x) = ϕ(−x).
We want to define the convolution u ∗ v when u and v are distributions. First, if

u ∈ D′(Ω) and ϕ ∈ C∞0 (Rn) we set

(u ∗ ϕ)(x) := u(ϕ(x− ·))

for x from the set

(1.1.2) Ω′ := {x ∈ Rn : {x} − supp ϕ ⊂ Ω}.

One can see that u ∗ϕ is determined in a neighborhood of x by u restricted to a neighbor-
hood of {x} − supp ϕ.
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Theorem 1.1.5. For u, v ∈ D′(Ω) and ϕ, ψ ∈ C∞0 (Rn) we have
i) u ∗ ϕ ∈ C∞(Ω′);
ii) Dα(u ∗ ϕ) = u ∗Dαϕ = Dαu ∗ ϕ;
iii) supp (u ∗ ϕ) ⊂ supp u + supp ϕ;
iv) (u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ) on the set

Ω′′ = {x ∈ Rn : {x} − (suppϕ + supp ψ) ⊂ Ω};

v) (u ∗ ϕ)(ψ) = u (ϕ̃ ∗ ψ) = u

(
˜(ϕ ∗ ψ̃)

)
if supp ψ ⊂ Ω′;

vi) If u ∗ ϕ = v ∗ ϕ for ϕ with support in an arbitrary small neighborhood of 0, then
u = v.

Proof. Write
ϕ(x + h) = ϕ(x) +

∑

j

hjDjϕ(x) + Rh(x).

Then

(u ∗ ϕ)(x + h) = u(ϕ(x + h− ·)) = u(ϕ(x− ·)) +
∑

j

hj u (Djϕ(x− ·)) + u(Rh(x− ·))

and u (Djϕ(x− ·)) = Dju (ϕ(x− ·)). By Theorem 1.1.1 and Taylor’s formula we have for
some finite k

|u(Rh(x− ·))| ≤ C
∑

|α|≤k

‖DαRh(x− ·)‖ = o(|h|)

uniformly in h. Hence

(u ∗ ϕ)(x + h) = (u ∗ ϕ)(x) +
∑

j

hj (u ∗Djϕ)(x) + o(|h|).

Therefore u ∗ ϕ is differentiable (in particular continuous) and

Dj(u ∗ ϕ) = u ∗Djϕ = Dju ∗ ϕ,

thus u ∗ ϕ ∈ C1. Iteration of this gives i) and ii).
iii) If x /∈ supp u + supp ϕ then supp u ∩ ({x} − supp ϕ) = ∅ and (u ∗ ϕ)(x) = 0.
iv) One can easily show that

ϕ ∗ ψ = lim
ε→0

∑

y∈Zn

εnϕ(· − εy)ψ(εy)

in C∞0 (Ω′′). Thus

(u ∗ (ϕ ∗ ψ)) (x) = u

(
lim
ε→0

∑

y∈Zn

εnϕ(x− · − εy)ψ(εy)
)

= lim
ε→0

∑

y∈Zn

εn(u ∗ ϕ)(x− εy)ψ(εy)

= ((u ∗ ϕ) ∗ ψ) (x).
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v) We have
˜(ϕ ∗ ψ̃) = ϕ̃ ∗ ψ

and, similarly as above,

(u ∗ ϕ)(ψ) = lim
ε→0

∑

x∈Zn

εnu (ϕ(εx− ·))ψ(εx)

= u

(
lim
ε→0

∑

x∈Zn

εnϕ(εx− ·)ψ(εx)
)

= u

(∫
ϕ(x− ·)ψ(x)dλ(x)

)

= u (ϕ̃ ∗ ψ) .

vi) Let x ∈ Ω′ and take ψ ∈ C∞0 (Ω′) with support in a small neighborhood of x. If
ϕ := ψ(x−·) then ψ = ϕ(x−·) and u(ψ) = (u∗ϕ)(x) = (v ∗ϕ)(x) = v(ψ). The conclusion
follows from Theorem 1.1.2.

Let ρ ∈ C∞0 (Rn) be such that ρ ≥ 0, supp ρ = B(0, 1),
∫

ρdλ = 1 and ρ depends only
on |x|. Set ρε(x) := ε−nρ(x/ε). Then supp ρε = B(0, ε) but

∫
ρεdλ = 1. Theorem 1.1.5

gives the following result:

Theorem 1.1.6. If u ∈ D′(Ω), then uε := u ∗ ρε ∈ C∞(Ωε), where

Ωε := {x ∈ Ω : dist (x, ∂Ω) < ε},
and uε −→ u weakly as ε −→ 0 (that is uε(ϕ) −→ u(ϕ) for every ϕ ∈ D(Ω)).

Proof. By Theorem 1.1.5.v it is enough to observe that ρ̃ε ∗ ϕ −→ ϕ in C∞0 (Ω).

Theorem 1.1.7. If u ∈ D′(Ω) then there exists a sequence uj ∈ C∞0 (Ω) such that uj −→ u
weakly.

Proof. Take χj ∈ C∞0 (Ω) such that supp χj ⊂ Ω1/j and {χj = 1} ↑ Ω as j ↑ ∞. Set

uj := (χju) ∗ ρ1/j .

Then by Theorem 1.1.5 uj ∈ C∞0 (Ω) and for ϕ ∈ C∞0 (Ω) and j big enough

uj(ϕ) = u(χj(ρ̃1/j ∗ ϕ)) = u(ρ1/j ∗ ϕ).

Suppose u ∈ D′(Ω) and let v ∈ D′(Rn) have a compact support. We define

(u ∗ v)(ϕ) := u
(
(̃v ∗ ϕ̃)

)
, ϕ ∈ C∞0 (Ω′),
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where Ω′ is given by (1.1.2). By Theorem 1.1.5.v this definition is consistent with the
previous one if v is smooth.

Theorem 1.1.8. We have
i) u ∗ v ∈ D′(Ω′);
ii) (u ∗ v) ∗ w = u ∗ (v ∗ w) if w is a distribution with compact support;
iii) Dα(u ∗ v) = u ∗Dαv = Dαu ∗ v;
iv) supp (u ∗ v) ⊂ supp u + supp v;
v) u ∗ v = v ∗ u if u has a compact support;
vi) u ∗ δ0 = u.

Proof. i) If ϕj −→ 0 in C∞0 (Ω′) then v ∗ ϕj −→ 0 in C∞0 (Ω).
ii) First we want to show that

(1.1.3) (u ∗ v) ∗ ϕ = u ∗ (v ∗ ϕ)

if ϕ is a test function. We have

((u ∗ v) ∗ ϕ) (x) = (u ∗ v)(ϕ(x− ·)) = u
(

˜(v ∗ ϕ(x− ·))
)

and
˜(v ∗ ϕ(x− ·))(y) = v(ϕ(x− y − ·)) = (v ∗ ϕ)(x− y)

thus (1.1.3) follows. Now one can easily show ii) using (1.1.3) and Theorem 1.1.5.vi.
iii) It follows easily from ii), Theorems 1.1.5.ii and 1.1.5.vi.
iv) Let ϕ ∈ C∞0 (Ω′) be such that supp ϕ∩ (suppu+supp v) = ∅. By Theorem 1.1.5.iii

we have
supp (̃v ∗ ϕ̃) ⊂ −(supp v − supp ϕ).

Since (supp ϕ− supp v) ∩ supp u = ∅, it follows that (u ∗ v)(ϕ) = 0.
v) If ϕ, ψ ∈ C∞0 (Rn) have support in a small neighborhood of 0 then by ii), Theorem

1.1.5.i and the commutativity of the convolution of functions we have

u ∗ v ∗ ϕ ∗ ψ = u ∗ ψ ∗ v ∗ ϕ = v ∗ ϕ ∗ u ∗ ψ = v ∗ u ∗ ϕ ∗ ψ.

By Theorem 1.1.5.vi used twice we conclude that u ∗ v = v ∗ u.
vi) Follows directly from the definition.

If u is a distribution then by sing suppu denote the set of those x such that u is not
C∞ in a neighborhood of x.

Theorem 1.1.9. sing supp (u ∗ v) ⊂ sing supp u + sing supp v

Proof. Take x /∈ sing suppu + sing supp v. We have to show that u ∗ v is C∞ in a
neighborhood of x. Let ψ ∈ C∞0 (Rn) be such that ψ = 1 in a neighborhood of sing supp v
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and x /∈ sing supp u + supp ψ. The last condition means that u is C∞ in a neighborhood
of {x} − supp ψ. We have

u ∗ v = u ∗ (ψv) + u ∗ ((1− ψ)v)

and the last term is C∞ by Theorem 1.1.5.i, since (1 − ψ)v ∈ C∞0 (Rn). Let ϕ ∈ C∞0 (Ω)
be such that ϕ = 1 in a neighborhood of {x} − supp ψ and u is C∞ in a neighborhood of
supp ϕ. Then

u ∗ (ψv) = (ϕu) ∗ (ψv) + ((1− ϕ)u) ∗ (ψv).

The first term is C∞ by Theorem 1.1.8.v and Theorem 1.1.5.i, since ϕu ∈ C∞0 (Ω). By
Theorem 1.1.8.iv the support of the second term is contained in the set supp (1−ϕ)+supp ψ
which does not contain x.

Corollary 1.1.10. If u ∈ D′(Ω) then sing supp u = sing supp∆u.

Proof. Obviously sing supp ∆u ⊂ sing supp u. Let Ω′ b Ω and take χ ∈ C∞0 (Ω) such that
χ = 1 in a neighborhood of Ω′. Then χu = ∆E ∗ (uχ) = E ∗ ∆(uχ). Thus by Theorem
1.1.9

Ω′ ∩ sing suppu = Ω′ ∩ sing supp (χu) ⊂ Ω′ ∩ sing supp ∆(χu) = Ω′ ∩ sing supp ∆u

and the corollary follows.

The following result is a very weak version of the Sobolev theorem. The full version
can be found in [Hör2].

Theorem 1.1.11. Assume that Ω is a convex domain. Let u ∈ D′(Ω) be such that
Dju ∈ L∞(Ω), j = 1, . . . , n. Then u is a Lipschitz continuous function in Ω. The clas-
sical derivatives of u given by the Rademacher theorem coincide with the distributional
derivatives.

Proof. First we show that u is continuous. Take Ω′ b Ω and let χ ∈ C∞0 (Ω) be such that
χ ≥ 0 and χ = 1 in a neighborhood of Ω′. Then by Theorems 1.1.4 and 1.1.8

χu = ∆E ∗ (χu) =
∑

j

DjE ∗Dj(χu)

=
∑

j

DjE ∗ (χDju) +
∑

j

DjE ∗ (uDjχ).

By Theorem 1.1.9 DjE∗(uDjχ) ∈ C∞(Ω′) and DjE∗(χDju) is continuous by the Lebesgue
bounded convergence theorem, since DjE ∈ L1

loc(Rn) and χDju ∈ L∞0 (Ω). Hence, u is
continuous.
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Assume that |Dju| ≤ M in Ω, j = 1, . . . , n. If uε = u ∗ ρε ∈ C∞(Ωε) then uε −→ u
uniformly as ε −→ 0, |Djuε| ≤ M and by the mean value theorem

|uε(x)− uε(y)| ≤ M |x− y|, x, y ∈ Ωε.

Thus u is Lipschitz continuous.
The last part of the theorem follows immediately from Proposition A1.3.

Theorem 1.1.12. Let u be a distribution and k = 1, 2, . . .
i) If Dαu is a locally bounded function for every α with |α| = k then u ∈ Ck−1,1 (that

is u ∈ Ck−1 and partial derivatives of u of order k − 1 are Lipschitz continuous).
ii) If Dαu is a continuous function for every α with |α| = k then u ∈ Ck.

Proof. It is enough to prove the theorem for k = 1 and iterate. i) is then exactly Theorem
1.1.11 and to show ii) it suffices to observe the following elementary fact: if u is Lipschitz
continuous (thus differentiable almost everywhere) and Dju ∈ L∞loc can be extended to a
continuous function then Dju exists in every point and is continuous.

Theorem 1.1.13. Assume that uj ∈ Ck−1,1(Ω) tend weakly to u ∈ D′(Ω) and that
|Dαuj | ≤ C < ∞ if |α| = k. Then u ∈ Ck−1,1(Ω) and |Dαu| ≤ C if |α| = k.

Proof. By Theorem 1.1.12 it is enough to show that if uj ∈ L∞(Ω), |uj | ≤ C and
uj −→ u ∈ D′(Ω) weakly, then u ∈ L∞(Ω), |u| ≤ C. We have L∞(Ω) =

(
L1(Ω)

)′. By
the Alouglu theorem there exists v ∈ L∞(Ω), |v| ≤ C which is a limit of uj in the weak∗

topology of
(
L1(Ω)

)′, thus u = v.

1.2. Subharmonic functions and the Dirichlet problem

A function h is called harmonic if ∆h = 0. By Corollary 1.1.10 every distribution with
this property must be a C∞ function. The set of all harmonic functions in Ω we denote
by H(Ω).

Let B = B(0, R) be a ball in Rn. For y ∈ B we want to find a function u ∈ L1
loc(B) such

that ∆u = δy and lim
x→∂B

u(x) = 0. If we find h ∈ H(B) ∩C(B) such that h(x) = E(x− y)

for x ∈ ∂B then a function of the form u(x) = E(x − y) − h(x) will be fine. For y 6= 0
we are thus looking for h of the form h(x) = E(α(x− βy)), where α > 0 and |β| > R/|y|.
Since E(x) depends only on |x|, it is enough to find α and β such that |x−y| = |α(x−βy)|,
if |x| = R. It is enough to have

R2 − 2〈x, y〉+ |y|2 = α2R2 − 2α2β〈x, y〉+ α2β2|y|2,

thus R2 + |y|2 = α2R2 + α2β2|y|2 and 1 = α2β. Therefore it suffices to take α = |y|/R
and β = R2/|y|2. We have just proved the following result:
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Theorem 1.2.1. For x ∈ B, y ∈ B, where B = B(0, R), define

Gy(x) = G(x, y) = E(x− y)− E

( |y|
R

x− R

|y|y
)

.

Then Gy ∈ H(B(0, R2/|y|) \ {y}) ∩ L1
loc(B(0, R2/|y|)), ∆Gy = δy and Gy|∂B(0,R) = 0.

G is called a Green function for B.
If h ∈ H(B) ∩ C2(B) then smoothing Gy near y and using Proposition 1.1.3 we can

show that

(1.2.1) h(y) =
∫

∂B

h(x)
∂Gy

∂n
(x)dσ(x), y ∈ B.

We want to compute ∂Gy/∂n at x ∈ ∂B. For t > 0 set γ(t) := Ê(
√

t); then γ′(t) =
(2cn)−1t−n/2 and

Gy(x) = γ(|x|2 − 2〈x, y〉+ |y|2)− γ(|x|2|y|2/R2 − 2〈x, y〉+ R2).

Therefore,
∂Gy

∂n
(x) =

R2 − |y|2
cnR|x− y|n , x ∈ ∂B, y ∈ B.

Theorem 1.2.2. For f ∈ L∞(∂B), where B = B(y0, R), set

h(y) :=
∫

∂B

f(x)
R2 − |y − y0|2
cnR|x− y|n dσ(x), y ∈ B.

Then h is harmonic in B and if f is continuous at some x0 ∈ ∂B then

lim
y→x0

h(y) = f(x0).

In particular, if f ∈ C(∂B) then h ∈ C(B).

Proof. We may assume that y0 = 0. G is symmetric and therefore

∆y

(
∂Gy

∂n
(x)

)
=

(
∂

∂n

)

x

(∆Gx) (y) = 0.

Thus h is harmonic, since we can differentiate under the sign of integration.
Take ε, r > 0 and set Ar := ∂B ∩ B(x0, r), ar := supAr

|f − f(x0)| and M :=
sup∂B |f − f(x0)|. By (1.2.1) we have

∫

∂B

R2 − |y|2
cnR|x− y|n dσ(x) = 1, y ∈ B.
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If |y − x0| ≤ ε then R2 − |y|2 ≤ 2εR, |x− y| ≥ r − ε for x ∈ ∂B \Ar and

|h(y)− f(x0)| ≤
∫

∂B

|f(x)− f(x0)| R2 − |y|2
cnR|x− y|n dσ(x)

=
∫

Ar

+
∫

∂B\Ar

≤ ar + M
2εR

(r − ε)n
.

If we take r = ε + ε1/(n+1) and let ε tend to 0 then the theorem follows.

A function u : Ω −→ [−∞, +∞) is called subharmonic if it is upper semicontinuous,
not identically −∞ on any connected component of Ω and for every ball Br = B(x0, r) b Ω

u(x0) ≤ 1
σ(∂Br)

∫

∂Br

u(x)dσ(x).

The set of all subharmonic functions in Ω we denote by SH(Ω). It follows from (1.2.1)
that harmonic functions are subharmonic.

Theorem 1.2.3. Assume that u, v ∈ SH(Ω) and Br = B(x0, r) b Ω. Then
i) u satisfies the maximum principle;

ii) u(x0) ≤ 1
λ(Br)

∫

Br

u(x)dλ(x);

iii) u ∈ L1
loc(Ω);

iv)
1

σ(∂Br)

∫

∂Br

u(x)dσ(x) ↓ u(x0) as r ↓ 0;

v) uε = u ∗ ρε is subharmonic and uε ↓ u as ε ↓ 0;
vi) A decreasing sequence of subharmonic functions on a domain is converging point-

wise either to a subharmonic function or to −∞;
vii) If u ≤ v almost everywhere then u ≤ v everywhere;
viii) If {uα} is a family of subharmonic functions locally uniformly bounded above

then u∗, where u = supα uα, is subharmonic and u = u∗ almost everywhere. (u∗, resp. u∗,
denotes the upper, resp. lower, regularization of u.)

Proof. i) Assume that u ≤ u(x0) and u(x1) < u(x0) for some x1 with |x1−x0| = r. Then
from the upper semicontinuity it follows that for some ε > 0 we have u ≤ u(x0) − ε on
E ⊂ ∂Br with σ(E) > 0. Then

u(x0) ≤ 1
σ(∂Br)

∫

∂Br

u(x)dσ(x) ≤ (u(x0)− ε)σ(E) + u(x0)(σ(∂Br)− σ(E))
σ(∂Br)

< u(x0)

which is a contradiction.
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ii) We have

1
λ(Br)

∫

Br

u(x)dλ(x) =
1

λ(Br)

∫ r

0

∫

∂Bt

u(x)dσ(x)dt

≥ 1
λ(Br)

∫ r

0

σ(∂Bt)u(x0)dt

= u(x0).

iii) Follows easily from ii), the upper semicontinuity of u and the fact that u is not
identically −∞.

iv) and v) we prove simultanously. First assume that u is smooth. Let r < R. By
Theorem 1.2.2 and (1.2.1) there is a unique h ∈ H(BR) ∩ C(BR) with h = u on ∂BR.
Then h ≥ u in BR and

1
σ(∂Br)

∫

∂Br

u(x)dσ(x) ≤ 1
σ(∂Br)

∫

∂Br

h(x)dσ(x)

=
1

σ(∂BR)

∫

∂BR

h(x)dσ(x) =
1

σ(∂Br)

∫

∂Br

u(x)dσ(x).

Thus we have iv) for smooth functions. Now let u be arbitrary. The Fubini theorem gives

(u ∗ ρε)(x0) ≤
∫

B(0,ε)

1
∂Br

∫

∂Br

u(x− y)ρε(y)dσ(x)dλ(y)

=
1

∂Br

∫

∂Br

(u ∗ ρε)(x)dσ(x)

and thus uε is subharmonic. On the other hand

(u ∗ ρε)(x0) =
∫

B(0,1)

u(x0 − εy)ρ(y)dλ(y)

=
∫ 1

0

1
εn−1

∫

∂Bεr

u(x)dσ(x)ρ̃(r)dr

and from iv) it follows that uε is increasing in ε. Thus we have v). Now we can approximate

u and see that the mean value
1

σ(∂Br)

∫

∂Br

u(x)dσ(x) is increasing in r. The upper

semicontinuity impiles that it must converge to u(x0) as r ↓ 0.
vi) Follows from the upper semicontinuity and the Lebesgue monotone convergence

theorem.
vii) Follows immediately from iv) and ii).
viii) The Choquet lemma (Lemma A2.3) implies that we may assume that the family

{uα} is countable and thus that u is measurable. We have

u(x0) ≤ sup
α

1
σ(∂Br)

∫

∂Br

uα(x)dσ(x) ≤ 1
σ(∂Br)

∫

∂Br

u(x)dσ(x).
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The last expression is a continuous function with respect to x0 and thus u∗ is subharmonic.
In the same way as in v) we check that u ∗ ρε satisfies the mean value inequality and thus
is subharmonic. Since u ∗ ρε ∗ ρδ is increasing in δ, it follows that u ∗ ρε decreases to some
subharmonic v as ε ↓ 0. We have u ∗ ρε ≥ uα ∗ ρε ≥ uα, hence u ∗ ρε ≥ u∗ and v ≥ u∗. On
the other hand u ∗ ρε −→ u in L1

loc and u = v ≥ u∗ almost everywhere and viii) follows.

Corollary 1.2.4. If u ∈ SH(Ω) and B b Ω is a ball then there exists û ∈ SH(Ω) such
that û ≥ u, û = u outside B and û is harmonic in B. If uj ↓ u then ûj ↓ û. If u is
continuous then so is û.

Proof. If u is continuous then the corollary follows from Theorem 1.2.2. If u is arbitrary
then take a sequence {uj} of continuous subharmonic functions near B decreasing to u.
Then ûj decreases to some û ∈ SH(Ω) and one can easily show that û has the required
properties.

Theorem 1.2.5. A function u is subharmonic iff u is a distribution with ∆u ≥ 0.

Proof. First assume that u is smooth. Suppose that u is subharmonic and ∆u < 0 in
some ball B. Let h ∈ H(B) ∩ C(B) be equal to u on ∂B and set v := u − h. Then
v ∈ SH(B) ∩ C(B), it vanishes on ∂B and thus has a local minimum at some x′ ∈ B.
Then vxjxj (x

′) ≥ 0, j = 1, . . . , n, hence ∆v(x1) ≥ 0 which is a contradiction. Now assume
that ∆u ≥ 0. Considering u + ε|x|2 instead of u we may assume that ∆u > 0. We
have to show that u(x0) ≤ h(x0). If there is x′′ ∈ B where u − h has a local maximum
then ∆u(x′′) = ∆(u − h)(x′′) ≤ 0 which is a contradiction. Thus u < h in B and u is
subharmonic.

Now, take arbitrary u ∈ D′(Ω) with ∆u ≥ 0. Then ∆uε = ∆(u ∗ ρε) ≥ 0, thus uε is
C∞ and subharmonic, and so is uε,δ = u∗ρε∗ρδ. uε,δ is increasing in δ and uε,δ = uδ,ε ↓ uδ

as ε ↓ 0, thus uδ is increasing in δ. Hence, as δ ↓ 0, uδ decreases to some u0 ∈ SH(Ω) and
tends weakly to u, thus u = u0. (This is why u0 cannot be identically −∞.) On the other
hand, if u ∈ SH(Ω), then 0 ≤ ∆uε = ∆u ∗ ρε −→ ∆u weakly, thus ∆u ≥ 0.

Proposition 1.2.6. If Ω is a bounded domain, u ∈ SH(Ω) and h ∈ H(Ω) then

(u∗ ≤ h∗ on ∂Ω) ⇒ ((u− h)∗ ≤ 0 on ∂Ω) ⇒ (u ≤ h on Ω) .

Proof. Follows from the fact that (u− h)∗ ≤ u∗ − h∗ and from the maximum principle.

Throughout the rest of this section we assume that Ω is a bounded domain. The next
result is the main feature of the so called Perron method.
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Theorem 1.2.7. For f ∈ L∞(∂Ω) define

h = hf,Ω := sup{v ∈ SH(Ω) : v∗|∂Ω ≤ f}.

Then h ∈ H(Ω) (h is called the Perron envelope of f).

Proof. By B denote the family of all v ∈ SH(Ω) with v∗|∂Ω ≤ f . Take a ball B b Ω,
x0 ∈ B and let vj ∈ B be such that vj(x0) ↑ h(x0). Using Corollary 1.2.4 we may
inductively define

u1 := v̂1,

uj+1 := ̂(max{uj , vj+1}).

Then uj ∈ B, uj is harmonic in B, increases to some h̃ ∈ H(B), where h̃ ≤ h. It remains
to show that h̃ = h in B.

Take x1 ∈ B and αj ∈ B such that αj(x1) ↑ h(x1). Define inductively

β1 := ̂(max{u1, α1}),
βj+1 := ̂(max{uj+1, αj+1, βj}).

Then βj ∈ B, uj ≤ βj and βj is increasing to some β ∈ H(B). We have h̃ ≤ β ≤ h and
h̃(x0) = β(x0), thus by the maximum principle h̃ = β in B. Now the theorem follows since
h̃(x1) = β(x1) = h(x1).

A point x0 ∈ ∂Ω is called regular if for every f ∈ L∞(∂Ω) which is continuous at x0

we have
lim

x→x0
hf,Ω(x) = f(x0).

Theorem 1.2.8. For x0 ∈ ∂Ω the following are equivalent
i) x0 is regular;
ii) There exists a weak barrier at x0, that is u ∈ SH(Ω) such that u < 0 and

limx→x0 u(x) = 0;
iii) There exists a local weak barrier at x0, that is a weak barrier which is defined on

Ω ∩ U , where U is a neighborhood of x0;
iv) There exists a strong barrier at x0, that is a weak barrier with additional property

u∗|Ω\{x0} < 0;

v) There exists a local strong barrier at x0.

Proof. The implications iv)⇒ii)⇒iii) and iv)⇒v) are clear. To show i)⇒iv) take f(x) =
−|x − x0| and h = hf,Ω. Then h ≤ f in Ω, since f = inf{h̃ ∈ H(Rn) : h̃ ≥ f}, thus
h is a strong barrier. To prove v)⇒iv) let u be a local strong barrier at x0 defined in a
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neighborhood of Ω ∩ U . Take ε > 0 such that u ≤ −ε on Ω ∩ ∂U . Then it is easy to show
that the function {

max{u,−ε} on Ω ∩ U,

−ε on Ω \ U

is a global strong barrier. Thus it remains to show iii)⇒iv)⇒i).
iv)⇒i) Take f ∈ L∞(∂Ω) such that f is continuous at x0. We may assume that

f(x0) = 0. If ε > 0 and u is a strong barrier then we can find c > 0 such that cu∗ ≤ f + ε
and cu∗ ≤ −f + ε on ∂Ω. The first inequality implies that cu − ε ≤ hf,Ω on Ω. If
v ∈ SH(Ω) is such that v∗|∂Ω ≤ f then (cu + v − ε)∗ ≤ 0 on ∂Ω thus by the maximum
principle cu + v − ε ≤ 0 on Ω. Hence

cu− ε ≤ hf,Ω ≤ −cu + ε

and limx→x0 hf,Ω(x) = 0.
iii)⇒iv) Let U be a neighborhood of x0 and u ∈ SH(Ω ∩ U) such that u < 0 and

limx→x0 u(x) = 0. Set g(x) := |x− x0| and h := hg,Ω. Then h ∈ H(Ω) and g ≤ h ≤ M :=
supΩ g, since g is subharmonic. It is enough to show that h∗(x0) = 0; then −h would be a
strong barrier.

Take ε > 0 such that B = B(x0, ε) b U . For a compact K b Ω ∩ ∂B set

f :=
{

1 on (Ω \K) ∩ ∂B,

0 elsewhere on ∂B.

Theorem 1.2.2 gives I ∈ H(B) such that 0 ≤ I ≤ 1,

(1.2.2) lim
x→(Ω\K)∩∂B

I(x) = 1

and

h(x0) =
σ ((Ω \K) ∩ ∂B)

σ(∂B)
.

We may choose K so that I(x0) ≤ ε.
Now we want to find positive constants α, β and γ so that

h ≤ −αu + βI + γ on Ω ∩B.

To have this it is enough to check that

(1.2.3) v∗ + αu∗ ≤ βI∗ + γ on ∂(Ω ∩B)

for v ∈ SH(Ω) with v∗|∂Ω ≤ g. On ∂Ω ∩B (1.2.3) holds if γ = ε. On K v∗ ≤ M and it is
enough to take

α =
M − ε

−maxK u
,
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whereas on (Ω \K) ∩ ∂B, by (1.2.2), we may take β = M − ε. Thus

h ≤ M − ε

maxK u
u + (M − ε)I + ε

and
h∗(x0) ≤ (M − ε)ε + ε,

hence h∗(x0) = 0.

The implication iii)⇒iv) in Theorem 1.2.8 is due to Bouligand.

Theorem 1.2.9. i) If n = 2 and a connected component of ∂Ω containing x0 is not a
point, then x0 is regular.

ii) If there exists an open cone C with a vertex at x0 and a neighborhood U of x0 such
that C ∩ U ∩ Ω = {x0} then x0 is regular.

Proof. i) By K denote the connected component of ∂Ω containing x0 and fix z1 ∈ K,
z1 6= x0. Let Ω̂ be a connected component of Ĉ \K containing Ω (here Ĉ stands for the
Riemann sphere). Then Ω̂ is simply connected, thus there exist a holomorphic f in Ω̂ such

that ef(z) =
z − x0

z − z1
. Set u(z) := 1/Re f . For z near x0 we have

u(z) =
log

|z − x0|
|z − z1|
|f(z)|2 ≥ 1

log
|z − x0|
|z − z1|

,

hence u is negative and limz→x0 u(z) = 0.
ii) It is enough to show that for given 0 < a < 1 the domain {x1 < a|x|} (which is

a complement of a closed cone) is regular at the origin. Set u(x) := |x|αg(x1/|x|), where
α > 0 and g is a negative C2 function on [−1, a]. One can compute that

∆u(x) = |x|α−2
(
(1− t2)g′′(t)− (n− 1)tg′(t) + α(α + n− 2)g(t)

)
,

where t = x1/|x|. It is enough to find g with (1−t2)g′′(t)−(n−1)tg′(t) > 0 for −1 ≤ t ≤ a
and take α sufficiently small.

Exercise Show that i) does not hold if n > 2.

We say that Ω is regular if all its boundary points are regular.

Theorem 1.2.10. For a bounded domain Ω the following are equivalent:
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i) Ω is regular;

ii) For every f ∈ C(∂Ω) we have hf,Ω ∈ H(Ω) ∩ C(Ω) and hf,Ω

∣∣∣
∂Ω

= f ;

iii) There exists a bounded subharmonic exhaustion function in Ω, that is u ∈ SH(Ω)
such that u < 0 and limx→∂Ω u(x) = 0.

Proof. It is enough to show that i) implies iii). Take a ball B b Ω and let f be equal to
0 on ∂Ω and to -1 on ∂B. Then

u =

{
h

f,Ω\B on Ω \B

−1 on B

has the required properties.

Exercise Show that if Ω is regular then the Dirichlet problem





u ∈ SH(Ω),
∆u = µ,

u∗ = u∗ = f on ∂Ω

has a unique solution provided that f ∈ C(∂Ω) and µ is either a nonnegative Radon
measure in Ω with compact support or µ ∈ Lp(Ω) for some p > n/2. In the latter case the
solution is continuous on Ω.

Let µ be a nonnegative Radon measure in Rn with compact support. We set

Uµ := E ∗ µ.

Uµ is called a potential of the measure µ.

Theorem 1.2.11. i) Uµ ∈ SH(Rn);
ii) ∆Uµ = µ;
iii) Uµ(x) =

∫
Rn E(x− y)dµ(y);

iv) If µ ∈ Lp
0(Rn) for some p > n/2 then Uµ is continuous in Rn;

v) If µ ∈ Ck
0 (Rn) then Uµ ∈ Ck(Rn), k = 0, 1, 2, . . . ,∞.

Proof. i) and ii) follow from Theorems 1.1.8 and 1.2.5.
iii) For ϕ ∈ C∞0 (Ω) we have

Uµ(ϕ) = E
(
(̃µ ∗ ϕ̃)

)
=

∫ ∫
E(x)ϕ(x + y)dµ(y)dλ(x) =

∫ ∫
E(x− y)dµ(y)ϕ(x)dλ(x)

and iii) follows.
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iv) If µ is a bounded function then it follows easily from the Lebesgue bounded con-
vergence theorem. Let µ be arbitrary and let µj := max{µ, j}. Then µj −→ µ in Lp(Rn)
as j −→∞ and from the Hölder inequality we infer

|Uµj (x)− Uµ(x)| ≤ ||E||Lq({x}−supp µ)||µj − µ||Lp(Rn),

where 1/p + 1/q = 1, hence q < n/(n− 2). Thus Uµj −→ Uµ locally uniformly in Rn.
v) Follows from iv) and Theorem 1.1.12.

Exercise Show that subharmonic functions are in Lp
loc for every p < n/(n− 2).

1.3.Nonnegative forms and currents

By C(p,q), p, q = 0, 1, . . . , n, we denote the set of complex forms

α =
∑

|J|=p
|K|=q

′
αJK

(
i

2

)p

dzJ ∧ dzK , αJK ∈ C.

Here
∑′ denotes the summation over increasing multi-indices and dzJ = dzj1 ∧ · · · ∧ dzjp ,

dzK = dzk1 ∧ · · · ∧ dzkq . The volume form is given by

dλ =
i

2
dz1 ∧ dz1 ∧ · · · ∧ i

2
dzn ∧ dzn.

If α1, . . . , αp ∈ C(1,0) then the form

i

2
α1 ∧ α1 ∧ · · · ∧ i

2
αp ∧ αp ∈ C(p,p)

is called an elementary nonnegative form.
Take α ∈ C(p,p). We say that α is nonnegative and write α ≥ 0 if α ∧ β ≥ 0 for

all elementary nonnegative forms in C(n−p,n−p). We say that α is real if α = α (that is
αJK = αKJ for all J,K with |J | = |K| = p).

Proposition 1.3.1. Write

α =
n∑

j,k=1

αjk
i

2
dzj ∧ dzk ∈ C(1,1).

Then α is nonnegative iff the matrix (αjk) is nonnegative.
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Proof. Take

αj =
n∑

k=1

ajkdzk ∈ C(1,0), j = 1, . . . , n− 1.

Then

α1 ∧ · · · ∧ αn−1 =
n∑

k=1

Mkdz1 ∧ · · · ∧ dzk−1 ∧ dzk+1 ∧ · · · ∧ dzn,

where Mk = det (ast) s=1,...,n−1
t=1,...,n, t 6=k

. Therefore

α ∧ i

2
α1 ∧ α1 ∧ · · · ∧ i

2
αn−1 ∧ αn−1 =

n∑

j,k=1

αjkMjMkdλ

and the proposition follows.

Theorem 1.3.2. Let α ∈ C(p,p) and β ∈ C(1,1) be nonnegative forms. Assume moreover
that β is real. Then α ∧ β ≥ 0.

Proof. Write
β =

∑

j,k

ajk
i

2
dzj ∧ dzk

and A = (ajk). Since β is real, A is a hermitian matrix. Let P be a unitary matrix
(that is PT P = (δjk)) such that B := P−1AP is a diagonal matrix. Then A = PBP

T
=

(
∑

l pjlblpkl) and

β =
∑

l

bl
i

2

(∑

j

pjldzj

)
∧

(∑

j

pjldzj

)
,

where bl ≥ 0. Therefore if γ is an elementary nonnegative form in C(n−p−1,n−p−1) then

α ∧ β ∧ γ =
∑

l

blα ∧ i

2

(∑

j

pjldzj

)
∧

(∑

j

pjldzj

)
∧ γ ≥ 0.

Theorem 1.3.2 implies in particular that elementary nonnegative forms are nonnega-
tive.

Lemma 1.3.3. The set of all elementary nonnegative forms in C(p,p) spans C(p,p) over C.

Proof. We have
(

i

2

)p

dzJ ∧ dzK = (−1)p(p−1)/2 i

2
dzj1 ∧ dzk1 ∧ · · · ∧

i

2
dzjp ∧ dzkp
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and

dzj ∧ dzk =
1
2
(dzj + dzk) ∧ (dzj + dzk) +

i

2
(dzj + idzk) ∧ (dzj − idzk)

− i + 1
2

(dzj ∧ dzj + dzk ∧ dzk).

Let Ω be an open set in Rn. Continuous linear functionals on D(n−p)(Ω) are called
currents on Ω of degree p or dimension n− p. The set of them will be denoted by D′(p)(Ω).
For T ∈ D′(p)(Ω) we may write

T =
∑

|I|=p

′
TIdxI , TI ∈ D′(Ω)

where TI(ϕ) = T (ϕωI) and {ωI} is a dual basis to dxI (that is dxI ∧ ωI′ = δII′dλ).
A current T is said to be of order 0 if it can be continuously extended to C0,(n−p)(Ω).

This is equivalent to the fact that all coefficients TI are distributions of order 0, that is
complex measures. In this case

T (Ψ) =
∫

Ω

T ∧Ψ, Ψ ∈ C0,(n−p)(Ω).

If T is of order 0 and E is a Borel subset of Ω then a total mass of T on E is defined by

||T ||E =
∑

I

′|TI |(E),

where |µ| denotes o variation of a complex measure µ.
A current T is called closed if dT = 0.
The following result is the Stokes theorem for currents.

Theorem 1.3.4. Let Ω be a bounded domain in Rn with C1 boundary. Assume that T
is a current in Ω of order n− 1 which is C1 on Ω \ U , where U b Ω. If moreover dT is of
order 0 then ∫

∂Ω

T =
∫

Ω

dT.

Proof. Take F ∈ C1
(n−1)(Ω) such that F = T in a neighborhood of ∂Ω. Then

∫

∂Ω

T =
∫

∂Ω

T =
∫

Ω

dF
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by the classical Stokes theorem. Thus we may assume that T has a compact support in
Ω. Set

Tε := T ∗ ρε =
∑

I

′
TI ∗ ρεdxI

and take ϕ ∈ C∞0 (Ω) such that ϕ = 1 in a neighborhood of suppT . Then dTε −→ dT
weakly and by the classical Stokes theorem again we have

∫

Ω

dT =
∫

Ω

ϕdT = lim
ε→0

∫

Ω

ϕdTε = lim
ε→0

∫

Ω

dTε = 0.

Let now Ω be an open set in Cn. Currents of the form

T =
∑

|J|=p
|K|=q

′
TJK

(
i

2

)p

dzJ ∧ dzK , TJK ∈ D′(Ω)

we call complex currents of bidegree (p, q) or bidimension (n−p, n−q). We have D′(p,q)(Ω) =(D(n−p,n−q)(Ω)
)′.

Let T ∈ D′(p,p)(Ω). Then, similarly as in the case of constant forms, we say that
T is nonnegative and write T ≥ 0 if T ∧ α ≥ 0 for all elementary nonnegative forms α
from C(n−p,n−p). We say that T is real if T = T (that is TJK = TKJ for all J,K with
|J | = |K| = p).

Theorem 1.3.5. Nonnegative currents are of order 0.

Proof. By Lemma 1.3.3 we may find a basis {αj} of C(n−p,n−p) consisting of elementary
nonnegative forms. Let {βj} be a basis in C(p,p) dual to {αj}. Then

T =
∑

J,K

′
TJK

(
i

2

)p

dzJ ∧ dzK =
∑

j

Tjβj ,

where Tjdλ = T ∧ αj ≥ 0, that is Tj are nonnegative Radon measures. We may write

βj =
∑

J,K

′
cj
JK

(
i

2

)p

dzJ ∧ dzK , cj
JK ∈ C.

Then
TJK =

∑

j

Cj
JKTj

and thus TJK are complex measures.
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From Proposition 1.3.1 and Theorem 1.3.2 the next two results easily follow by ap-
proximation.

Proposition 1.3.6. If

T =
∑

j,k

Tjk
i

2
dzj ∧ dzk ∈ D′(1,1)(Ω)

then T ≥ 0 iff (Tjk) ≥ 0.

Theorem 1.3.7. Let T ∈ D′(p,p)(Ω) be nonnegative and F ∈ C(1,1)(Ω) be nonnegative
and real. Then T ∧ F ≥ 0.

Note that T ∧ F in Theorem 1.3.7 makes sense by Theorem 1.3.5.
A fundamental Kähler form is defined by

ω :=
n∑

j=1

i

2
dzj ∧ dzj .

Later on we shall use the following estimate.

Lemma 1.3.8. For every nonnegative current

T =
∑

J,K

′
TJK

(
i

2

)p

dzJ ∧ dzK ∈ D′(p,p)(Ω)

we have
|TJK | ≤ cn T ∧ ωn−p.

Proof. Let {αl} be a basis of C(n−p,n−p) consisting of elementary nonnegative forms and
{ωJK} a basis in C(n−p,n−p) dual to the basis {(i/2)pdzj ∧ dzK} in C(p,p). Write

ωJK =
∑

l

cl
JKαl.

Then

|TJK | = |T ∧ ωJK | =
∣∣∣∣
∑

l

cl
JKT ∧ αl

∣∣∣∣ ≤ c′n max
l,J,K

|cl
JK |T ∧ αl.

We may write αl = α1
l ∧· · ·∧αp

l where αj
l are nonnegative real (1, 1) forms. By Proposition

1.3.1 and the matrix theory we have αj
l ≤ c′′n ω. By Theorem 1.3.7

T ∧ αl ≤ c′′n T ∧ α1
l ∧ · · · ∧ αp−1

l ∧ ω ≤ · · · ≤ (c′′n)p T ∧ ωp
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and the lemma follows.

Corollary 1.3.9. Let T be a nonnegative current of bidegree (p, p) such that T∧ωn−p = 0.
Then T = 0.

1.4. Plurisubharmonic functions and regular domains in Cn

Let Ω be an open set in Cn. A function u : Ω −→ [−∞, +∞) we call plurisubharmonic
if it is upper semicontinuous, not identically −∞ on any connected component of Ω and for
every z ∈ Ω and w ∈ Cn the function ζ 7−→ u(z +ζw) is subharmonic in a neighborhood of
0 in the complex plane (in other words u is subharmonic on every complex plane cutting
Ω). The set of all plurisubharmonic functions on Ω we denote by PSH(Ω).

Theorem 1.4.1. i) PSH(Ω) ⊂ SH(Ω);
ii) If u ∈ PSH(Ω) then u ∗ ρε ∈ PSH(Ωε);
iii) If uj is a decreasing sequence of plurisubharmonic functions on Ω to some u then

on every connected component of Ω u is either plurisubharmonic or −∞;
iv) If {uj} is a family of plurisubharmonic functions locally uniformly bounded above

then (supj uj)∗ is a plurisubharmonic function;
v) Suppose u ∈ D′(Ω). Then u ∈ PSH(Ω) iff the matrix (∂2u/∂zj∂zk) is nonnegative;
vi) If Ω1 and Ω2 are domains in Cn, T : Ω1 −→ Ω2 is a holomorphic mapping and

u ∈ PSH(Ω2) then u ◦ T ∈ PSH(Ω1);
vii) If u ∈ PSH(Cn) is bounded above then it must be constant;
viii) Assume that u is plurisubharmonic and let χ be a convex and increasing function

in the range of u. Then χ ◦ u is plurisubharmonic.

Proof. i) Take a ball B b Ω. We may assume that B = Bn is the unit ball in Cn. Use the
parametrization of ∂Bn defined by eit(z′,

√
1− |z′|2) for t ∈ (0, 2π] and z′ ∈ Bn−1. Then,

since u is plurisubharmonic,
∫

∂Bn

u(z)dσ(z) =
∫

Bn−1

|z′|2n−1

∫ 2π

0

u(eit(z′,
√

1− |z′|2))dt dλ(z′)

≥
∫

Bn−1

|z′|2n−1

∫ 2π

0

u(0)dt dλ(z′) = σ(∂Bn)u(0).

ii) Follows easily from the Fubini theorem.
iii), iv) Follow directly from the definition and related properties of subharmonic

functions.
v) By ii) we may assume that u is smooth. Then it is enough to compute

1
4
∆ζu(z + ζw) =

∂2u(z + ζw)
∂ζ∂ζ

=
n∑

j,k=1

∂2u

∂zj∂zk
(z + ζw)wjwk.
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vi) We may assume that u is smooth and that n = 1. Then

∂2(u ◦ T )
∂z∂z

=
∂2u

∂w∂w
◦ T

∣∣∣∣
∂T

∂z

∣∣∣∣
2

.

vii) We may assume that n = 1 and supC u = 0. The function

v(z) =

{
u(1/z) if z 6= 0
lim sup

ζ→0
u(1/ζ) if z = 0

is subharmonic and bounded in a punctured neighorhood of the origin. By the maximum
principle v(0) = 0. Moreover, in the unit disk we have v = (supj vj)∗, where vj(z) =
u(z) + 1/j log |z|. By iii) v is subharmonic in C and vii) follows from the maximum
principle.

viii) Again, we may assume that both u, χ are smooth and n = 1. Then we compute

∂2(χ ◦ u)
∂z∂z

= f ′′
∣∣∣∣
∂u

∂z

∣∣∣∣
2

+ f ′
∂2u

∂z∂z
.

Note that vii) is not true for subharmonic functions in Rn, n ≥ 3.

Exercise Show that plurisubharmonic functions are in Lp
loc for every p < ∞.

We have the operators
∂ : D′(p,q) −→ D′(p+1,q)

and
∂ : D′(p,q) −→ D′(p,q+1)

so that d = ∂ + ∂. Set
dc := i(∂ − ∂).

Then ddc = 2i∂∂. It follows that u is plurisubharmonic iff the (1, 1)-current ddcu is
nonnegative.

A function is called pluriharmonic in Ω if it is plurisubharmonic in Ω and harmonic on
every complex plane intersecting Ω. The set of all pluriharmonic functions in Ω we denote
by PH(Ω). Obviously we have PH ⊂ H ⊂ C∞.

Proposition 1.4.2. For a real smooth function u the following are equivalent
i) u is a pluriharmonic function;
ii) ∂2u/∂zj∂zk = 0 for all j, k = 1, . . . , n;
iii) Locally we can find a holomorphic function f such that u = Re f .
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Proof. i) implies that for every w ∈ Cn we have
∑n

j,k=1
∂2u

∂zj∂zk
wjwk = 0 and ii) follows.

Assume that ii) holds. Then ddcu = 0 and one can easily check that dcu is a real 1-form.
By the Poincare lemma in every ball there exists a real C1 function v such that dcu = dv.
It means that ∂(u + iv) = 0, thus f = u + iv gives iii). Obviously i) follows from iii).

A plurisubharmonic function u said to be strongly plurisubharmonic in Ω if for every
open U b Ω there exists λ > 0 such that the function u(z)− λ|z|2 is plurisubharmonic in
U (that is ddcu ≥ 4λω).

Exercise Assume that u, v are plurisubharmonic and negative. Show that the function

−(uv)1/2 is plurisubharmonic and that it is strongly plurisubharmonic if so is u.

We want to use the Perron method for plurisubharmonic functions. If Ω is a bounded
domain in Cn and f ∈ L∞(∂Ω), the function

(1.4.1) u = uf,Ω := sup{v ∈ PSH(Ω) : v∗|∂Ω ≤ f}.
is called a Perron-Bremermann envelope of f in Ω. However, contrary to the real case,
uf,Ω need not be even upper semicontinuous in general, as the following example shows.

Exercise Let Ω = ∆2 be a bidisk and

f(z, w) :=
{ −1 if z = 0

0 otherwise.

Show that uf |∂∆2 ,∆2 = f in ∆2.

It means that there can be no counterpart of Theorem 1.2.7 in the complex case.
Instead, our main tool will be the following result due to Walsh [Wal].

Theorem 1.4.3. Assume that Ω is a bounded domain and f ∈ C(∂Ω) is such that
u∗ = u∗ = f on ∂Ω, where u = uf,Ω. Then u is continuous in Ω.

Proof. We have u = u∗ ∈ PSH(Ω), hence it is enough to show that u is lower semicon-
tinuous. Fix z0 ∈ Ω and ε > 0. Since ∂Ω is compact, we can find δ > 0 such that

(1.4.2) z ∈ Ω, w ∈ ∂Ω, |z − w| ≤ δ =⇒ |u(z)− f(w)| ≤ ε.

Take z̃ ∈ Ω with |z̃ − z0| ≤ δ/2 and define

v(z) :=

{
max{u(z), u(z + z0 − z̃)− 2ε} if z ∈ Ω ∩ Ω̃,

u(z) if z ∈ Ω \ Ω̃,
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where Ω̃ = Ω−(z0−z̃). By (1.4.2) v = u in a neighborhood of Ω∩∂Ω̃ and thus v ∈ PSH(Ω).
Moreover, if z ∈ Ω ∩ Ω̃ and w ∈ ∂Ω are such that |z − w| ≤ δ/2 then |z + z0 − z̃ − w| ≤ δ
and from (1.4.2) again it follows that u(z + z0 − z̃) − 2ε ≤ f(w) − ε ≤ u(z). Therefore
v(z) ≤ u(z) if dist (z, ∂Ω) ≤ δ/2 and thus v ≤ u. We obtain u(z̃) ≥ v(z̃) ≥ u(z0)− 2ε and
it follows that u is lower semicontinuous.

Proposition 1.4.4. Assume that Ω b Cn is a regular domain (as a domain in R2n) and
f ∈ C(∂Ω). Then u∗f,Ω|∂Ω ≤ f and uf,Ω is plurisubharmonic in Ω. If fj ∈ C(∂Ω) are such
that fj ↓ f then ufj ,Ω ↓ uf,Ω. If f satisfies

(1.4.3) ∃ v ∈ PSH(Ω) ∩ C(Ω) such that v|∂Ω = f

then uf,Ω ∈ PSH(Ω) ∩ C(Ω).

Proof. We can find h ∈ H(Ω) ∩ C(Ω) such that h = f on ∂Ω. It follows that uf,Ω ≤ h
and thus u∗f,Ω|∂Ω ≤ f and uf,Ω ∈ PSH(Ω). The sequence ufj ,Ω is decreasing to some
u ∈ PSH(Ω) such that u ≥ uf,Ω. But u∗|∂Ω ≤ f and thus u = uf,Ω. The last part of the
proposition follows from Theorem 1.4.3.

If Ω b Cn fulfills (1.4.3) for every f ∈ C(∂Ω) then it is called B-regular. The following
characterization of B-regular domains is due to Sibony [Sib].

Theorem 1.4.5. For a bounded domain Ω in Cn the following are equivalent

i) Every boundary point of Ω admits a strong plurisubharmonic barrier;

ii) Ω is B-regular;

iii) There exists a continuous plurisubharmonic function ψ in Ω such that lim
z→∂Ω

ψ(z) =

0 and the function ψ(z) − |z|2 is plurisubharmonic (i.e. ψ is “uniformly” strongly pluri-
subharmonic in Ω).

Proof. Observe that every condition implies that Ω is regular. Of course i) follows from ii).
To prove i)⇒ii) assume that Ω is B-regular and let f ∈ C(∂Ω). Set u := uf,Ω. By Theorem
1.4.3 it is enough to show that u∗ = u∗ = f on ∂Ω. By Proposition 1.4.4 u∗|∂Ω ≤ f . Fix
z0 ∈ ∂Ω and ε > 0. By i) there is v ∈ PSH(Ω) such that v∗|Ω\{z0} < 0 and lim

z→z0
v(z) = 0.

Then f(z0) + Av∗ − ε ≤ f on ∂Ω for A big enough, thus f(z0) + Av − ε ≤ u in Ω. In
particular u∗(z0) ≥ f(z0)− ε and ii) follows.

If Ω is B-regular then we can find u ∈ PSH(Ω) ∩ C(Ω) such that u(z) = −|z|2 for
z ∈ ∂Ω. Then the function ψ(z) = u(z)+|z|2 gives iii). Assume therefore that iii) holds and
it remains to show that Ω is B-regular. Take f ∈ C(∂Ω) and set u := uf,Ω. By Theorem
1.4.3 and Proposition 1.4.4 it is enough to show that u∗|∂Ω ≥ f . For every ε > 0 we can
find a smooth g in a neighborhood of Ω such that f ≤ g ≤ f + ε on ∂Ω. For A big enough
g + Aψ ∈ PSH(Ω) and thus g + Aψ − ε ≤ u which implies that u∗|∂Ω ≥ g − ε ≥ f − ε.
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A domain Ω in Cn is called hyperconvex if there exists a negative plurisubharmonic
exhaustion function in Ω, that is u ∈ PSH(Ω), u < 0 in Ω such that for every c < 0 we
have {u < c} b Ω. If Ω is bounded then hyperconvexity can be characterized as follows.

Theorem 1.4.6. For a bounded domain Ω in Cn the following are equivalent
i) Every boundary point of Ω admits a (global) weak plurisubharmonic barrier.
ii) There exists a continuous strongly plurisubharmonic exhaustion function in Ω.

Proof. Obviously ii) implies i). Assume therefore that i) holds and let K b Ω be a closed
euclidean ball (or any other compact subset of Ω such that Ω \ K is regular in the real
sense). Set

u := sup{v ∈ PSH(Ω) : v ≤ 0, v|K ≤ −1}.
We have limz→∂Ω u(z) = 0 and from Theorem 1.4.3 applied to the domain Ω \K it follows
that u is continuous. Put ψ(z) := −((|z|2 − M)u(z))1/2, where M > 0 is such that
|z|2 −M < 0 for z ∈ Ω. Then ψ is strongly plurisubharmonic in Ω.

Exercise Polydisks in Cn, n ≥ 2, are hyperconvex but not B-regular.

So, contrary to the real case (Theorem 1.2.8), there is no equivalence between the
existence of weak and strong plurisubharmonic barriers.

Ω is called pseudoconvex if there exists ψ ∈ PSH(Ω) such that lim
z→∂Ω

ψ(z) = ∞. It can

be shown that Ω is pseudoconvex iff the function − log dist (z, ∂Ω) is plurisubharmonic in
Ω and the famous result obtained independently by Oka, Bremermann and Norguet states
that this is equivalent to the fact that Ω is a domain of holomorphy (see e.g. [Hör1]). If
n = 1 then all domains are pseudoconvex.

Exercise Ω = {(z, w) ∈ C2 : 0 < |z| < |w| < 1} is called a Hartogs triangle. Show that Ω
is a regular pseudoconvex but not hyperconvex domain.

The next result says that hyperconvexity is a local property of a boundary. It is due to
Kerzman and Rosay [KR] and the proof we present is taken from [Dem1]. An analoguous
result for B-regular domains is obvious (since local strong barriers immediately give global
strong barriers) and for pseudoconvex domains it can be found for example in [Hör1].

Theorem 1.4.7. Suppose that Ω is bounded domain in Cn such that for every z0 ∈ ∂Ω
there exists a neighborhood U of z0 such that Ω∩U is hyperconvex. Then Ω is hyperconvex.

Proof. There are domains U1, . . . , Up such that ∂Ω ⊂ ⋃
j Uj and Ω ∩ Uj are hypercon-

vex. Let uj be negative plurisubharmonic continuous functions in Ω ∩ Uj and such that
limz→∂Ω uj(z) = 0. Choose domains U ′

j b Uj such that ∂Ω ⊂ ⋃
j U ′

j . By Lemma A2.4 there
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is a convex, increasing function χ : (−∞, 0) −→ (0, +∞) such that limt→0− χ(t) = +∞
and |χ ◦ uj − χ ◦ uk| ≤ 1 on U ′

j ∩ U ′
k ∩ Ω. (To use Lemma A2.4 we set

f(t) := max{uj(z) : z ∈ U ′
j ∩ Ω, j = 1, . . . , p, dist(z, ∂Ω) ≥ −ε},

g(t) := min{uj(z) : z ∈ U ′
j ∩ Ω, j = 1, . . . , p, dist(z, ∂Ω) ≤ −ε}.)

From the convexity of χ it follows that

|χ(uj(z)− ε)− χ(uk(z)− ε)| ≤ 1, ε > 0, z ∈ U ′
j ∩ U ′

k ∩ Ω.

Let U ′′
j b U ′

j be such that Ω \ V ⊂ ⋃
j U ′′

j for some V b Ω and take smooth ϕj with
supp ϕj ⊂ U ′

j , 0 ≤ ϕj ≤ 1 and ϕj = 1 in a neighborhood of U ′′
j . Moreover there are

constants M, λ such that |z|2 −M ≤ 0 in Ω and ϕj + λ(|z|2 −M) is plurisubharmonic for
every j. Set

vj,ε(z) := χ(uj(z)− ε) + ϕj(z)− 1 + λ(|z|2 −M).

We have vj,ε ≤ vk,ε in a neighborhood of ∂U ′
j ∩ U ′′

k ∩Ω, thus vε(z) := max{vj,ε(z), χ(a)−
1 + λ(|z|2 − M)} is plurisubharmonic in Ω, where a is such that supV ∩Uj

uj < a < 0
and ε is small enough. Then wε := vε/χ(−ε) − 1 is ≤ 0, ≥ −λM/χ(−ε) on ∂Ω and
≤ (χ(a) − 1)/χ(−ε) − 1 on V \⋃

j U ′
j . It follows that the function u defined in the proof

of Theorem 1.4.8 satisfies limz→∂Ω u(z) = 0.

A domain Ω in Cn is called balanced if z ∈ Ω, λ ∈ C, |λ| ≤ 1 implies λz ∈ Ω. The
function

fΩ(z) := inf{t > 0 : t−1z ∈ Ω}
is called a Minkowski functional of Ω. Since Ω is open, one can show that fΩ is upper
semicontinuous in Cn and Ω = {fΩ < 1}. The following result is due to Siciak [Sic4].

Theorem 1.4.8. For a balanced domain Ω in Cn the following are equivalent
i) Ω is pseudoconvex;
ii) log fΩ ∈ PSH(Cn);
iii) Ω is convex with respect to homogeneous polynomials, that is, if K ⊂ Ω is compact

then the compact set

K̂H = {z ∈ Cn : |Q(z)| ≤ ||Q||K , for all homogeneous polynomials Q in Cn}

is contained in Ω.

Proof. If iii) holds then Ω is in particular holomorphically convex, thus it is a domain of
holomorphy and pseudoconvex. Obviously ii) implies that Ω = {log fΩ < 0} is pseudocon-
vex. Assume therefore that Ω is a domain of holomorphy and it is enough to show that
ii) and iii) hold. There exists a holomorphic function F in Ω which cannot be continued
holomorphically beyond Ω. Since Ω is balanced, expanding F in the Taylor series about
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the origin gives F =
∑∞

j=0 Qj , where Qj are homogeneous polynomials of degree j and the
series

∑
Qj converges pointwise in Ω. Set ψ := lim sup

j→∞
|Qj |1/j . By the Cauchy criterion

we have Ω ⊂ {ψ ≤ 1}.
We claim that the sequence |Qj |1/j is locally uniformly bounded above. Indeed, for

m ≥ 1 the sets Em :=
⋂

j{|Qj | ≤ m} are closed, increasing and Ω ⊂ ⋃
m Em. By the Baire

theorem for some m the set Em has nonempty interior. Thus |Qj | ≤ m in B(z0, r). If
z ∈ B(0, r) then for λ ∈ C, |λ| = 1 we have

|Qj(z0 + λz)| = |Qj(λz0 + z)| ≤ m,

since Qj are homogeneous. From the maximum principle for holomorphic functions of one
variable we deduce that the last inequality is valid also for λ = 0 and therefore |Qj | ≤ m
in B(0, r). It follows that |Qj(z)|1/j ≤ m1/j |z|/r for every z ∈ Cn, which proves the claim.

It is easy to show that the series
∑

Qj is locally uniformly convergent, and thus is a
holomorphic function in {ψ∗ < 1}. Since F is not extendable beyond Ω, it follows that
{ψ∗ < 1} ⊂ Ω ⊂ {ψ ≤ 1}. From the fact that ψ is homogeneous of degree 1 one can
deduce that int{ψ ≤ 1} = {ψ∗ < 1}, hence Ω = {ψ∗ < 1} and ψ∗ = fΩ. The functions
uk = (supj≥k

1
j log |Qj |)∗ are plurisubharmonic in Cn and uk ↓ log fΩ as k ↑ ∞, which

gives ii).
To show iii) let K ⊂ Ω be compact. There is a such that maxK ψ∗ < a < 1. We

have maxK euk ↓ maxK ψ∗ as k ↑ ∞, thus there is j0 such that for every j ≥ j0 we have
|Qj |1/j ≤ a on K. Then

K̂H ⊂
⋂

j≥j0

{|Qj | ≤ ||Qj ||K} ⊂
⋂

j≥j0

{|Qj |1/j ≤ a} ⊂ {ψ ≤ a} ⊂ Ω

and iii) follows.

A function u ∈ PSH(Ω) is called maximal if for every v ∈ PSH(Ω) such that v ≤ u
outside a compact subset of Ω we have v ≤ u in Ω. If n = 1 then maximal means precisely
harmonic. If n ≥ 2 then it is easy to show that for example plurisubharmonic functions
independent of one variable are maximal.

Exercise i) The function log |z| is maximal in Cn \ {0} but not in Cn.
ii) Let F be a holomorphic function on an open subset of Cn, n ≥ 2. Then for α ≥ 0

the functions |F |α and log |F | are maximal. This is false if n = 1.

Proposition 1.4.9. i) A decreasing sequence of maximal plurisubharmonic functions
converges either to a maximal function or to −∞;

ii) If u is maximal in an open Ω then for every G b Ω there is a sequence of continuous
maximal plurisubharmonic functions in G decreasing to u.

Proof. i) Follows directly from the definition.
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ii) We may assume that G is smooth, in particular regular. Let vj be a sequence
of continuous plurisubharmonic functions in a neighborhood of G decreasing to u. Set
uj := uvj |∂G,G. Then uj is a decreasing sequence of continuous functions on G, maximal
in G. From i) it easily follows that uj ↓ u.

The following counterpart of Corollary 1.2.4 can be easily obtained from Proposition
1.4.4.

Proposition 1.4.10. Assume that u is plurisubharmonic in Ω and let G b Ω be a regular
domain. Then there is û ∈ PSH(Ω) such that û ≥ u, û = u on Ω \G and û is maximal in
G. If uj ↓ u then ûj ↓ û. If u is continuous then so is û.
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II. The complex Monge-Ampère operator

2.1. The definition and basic properties

We start with a formula which is useful when one integrates by parts.

Proposition 2.1.1. If Ψ ∈ C∞(p,p) and T ∈ D′(q,q) with p + q = n− 1 then

Ψ ∧ ddcT − ddcΨ ∧ T = d (Ψ ∧ dcT − dcΨ ∧ T ) .

Proof. We have

d (Ψ ∧ dcT − dcΨ ∧ T ) = dΨ ∧ dcT + Ψ ∧ ddcT − ddcΨ ∧ T + dcΨ ∧ dT

and, since p + q + 1 = n,

dΨ ∧ dcT = i
(
∂Ψ ∧ ∂T − ∂Ψ ∧ ∂T

)
= −dcΨ ∧ dT.

By Proposition 2.1.1 for every current T ∈ D′(q,q)(Ω), Ω open in Cn, we have

(2.1.1) ddcT (Ψ) = T (ddcΨ), Ψ ∈ C∞0,(n−q−1,n−q−1)(Ω).

Let T be a nonnegative closed current of bidegree (q, q) and u a locally bounded pluri-
subharmonic function on Ω. By Theorem 1.3.5 the coefficients of T are complex measures
and thus uT is a well defined current. We define

ddcu ∧ T := ddc(uT ).

By (2.1.1)

(2.1.2)
∫

Ω

ddcu ∧ T ∧Ψ =
∫

Ω

u T ∧ ddcΨ, Ψ ∈ C∞0,(n−q−1,n−q−1)(Ω).

Proposition 2.1.2. ddcu ∧ T is a nonnegative closed current of bidegree (q + 1, q + 1).
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Proof. It is enough to show the nonnegativity. If |u| ≤ M then |uε| ≤ M , where
uε = u ∗ ρε. By the Lebesgue bounded convergence theorem uεT −→ uT weakly, hence
ddc(uεT ) −→ ddc(uT ) weakly. Since uε is smooth, we have ddc(uεT ) = ddcuε ∧ T in the
usual sense and ddcuε ∧ T ≥ 0 by Theorem 1.3.6.

Therefore we may define inductively a nonnegative closed current

ddcu1 ∧ · · · ∧ ddcup ∧ T ∈ D′(p+q,p+q)

for u1, . . . , up ∈ PSH ∩ L∞loc and T ∈ D′(q,q) with T ≥ 0, dT = 0, p + q ≤ n. In particular,
we may take T = ddcv, where v is an arbitrary plurisubharmonic function.

Proposition 2.1.3. Let Ω be a bounded domain in Cn and let u, v ∈ PSH ∩ L∞loc(Ω)
be such that u, v ≤ 0, limz→∂Ω u(z) = 0 and

∫
Ω

ddcv ∧ T < ∞. Assume that T ∈
D′(n−1,n−1)(Ω) is nonnegative and closed. Then

∫

Ω

v ddcu ∧ T ≤
∫

Ω

u ddcv ∧ T.

In particular, if in addition limz→∂Ω v(z) = 0 and
∫
Ω

ddcu ∧ T < ∞,

∫

Ω

v ddcu ∧ T =
∫

Ω

u ddcv ∧ T.

Proof. For ε > 0 set uε := max{u,−ε}. Then by the Lebesgue monotone convergence
theorem ∫

Ω

u ddcv ∧ T = lim
ε→0

∫

Ω

(u− uε)ddcv ∧ T

and ∫

Ω

(u− uε)ddcv ∧ T = lim
j→∞

∫

Ω

(u− uε) ∗ ρ1/j ddcv ∧ T.

Let Ω′ b Ω be such that {u− uε 6= 0} b Ω′ b Ω. From (2.1.2) for j big enough we infer
∫

Ω

(u− uε) ∗ ρ1/j ddcv ∧ T =
∫

Ω

v ddc
(
(u− uε) ∗ ρ1/j

) ∧ T ≥
∫

Ω′
v ddc(u ∗ ρ1/j) ∧ T

and the proposition follows from Lemma A2.1.

The next estimate is called the Chern-Levine-Nirenberg inequality [CLN].

Theorem 2.1.4. If K b Ω then

||ddcu1 ∧ · · · ∧ ddcup ∧ T ||K ≤ CK,Ω||u1||L∞(Ω) . . . ||up||L∞(Ω)||T ||Ω
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for u1, . . . , up ∈ PSH ∩ L∞(Ω) and T ∈ D′(q,q)(Ω) with T ≥ 0, dT = 0, p + q ≤ n.

Proof. We may assume that p = 1. Take ϕ ∈ C∞0 (Ω) such that ϕ ≥ 0 and ϕ = 1 on K.
If β ∈ C(n−q−1,n−q−1) is as in Lemma 1.3.8 then

||ddcu ∧ T ||K ≤ C ′
∫

K

ddcu ∧ T ∧ β ≤ C ′
∫

Ω

ϕddcu ∧ T ∧ β.

By (2.1.2) and since ddc(ϕβ) = ddcϕ ∧ β,

∫

Ω

ϕ ddcu ∧ T ∧ β =
∫

Ω

uT ∧ ddcϕ ∧ β ≤ C ′′||u||L∞(Ω)||T ||Ω.

Exercise Assume that v ∈ PSH(Ω) and K b Ω. Show that

||ddcv||K ≤ CK,Ω||v||L1(Ω).

The following approximation theorem is due to Bedford and Taylor [BT2].

Theorem 2.1.5. Let uj
0, u

j
1, . . . , u

j
p ∈ PSH ∩ L∞loc, 0 ≤ p ≤ n, j = 1, 2, . . . , be sequences

decreasing to u0, . . . , up ∈ PSH ∩L∞loc respectively. Let T be a closed nonnegative current
of bidegree (q, q), p + q ≤ n. Then

uj
0ddcuj

1 ∧ · · · ∧ ddcuj
p ∧ T −→ u0ddcu1 ∧ · · · ∧ ddcup ∧ T

weakly.

Proof. Suppose that uj
k and T are defined in a neighborhood of B, where B = B(z0, r). We

may assume that for some positive constant M we have −M ≤ uj
k ≤ −1 in a neighborhood

of B. If we take B′ b B and ψ(z) := |z−z0|2−r2 then for A big enough max{uj
k, Aψ} = uj

k

on B′ and max{uj
k, Aψ} = Aψ in a constant neighborhood of ∂B. We may therefore assume

that uj
k = uk = Aψ in a neighborhood of ∂B.

The further proof is by induction with respect to p. The theorem is obviously true if
p = 0. Let p ≥ 1 and assume the theorem holds for p− 1. It follows that

Sj := ddcuj
1 ∧ · · · ∧ ddcuj

p ∧ T −→ ddcu1 ∧ · · · ∧ ddcup ∧ T =: S

weakly. By the Chern-Levine-Nirenberg inequality (Theorem 2.1.4) the sequence Sj is
relatively compact in the weak∗ topology. It therefore remains to show that if uj

0S
j −→ Θ

weakly then Θ = u0S.
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By Lemma A2.2 we have Θ ∧ α ≤ u0S ∧ α for every elementary nonnegative α of
bidegree (n− p− q, n− p− q), hence u0S−Θ ≥ 0. By Corollary 1.3.9 it is enough to show
that

∫
B

(u0S −Θ) ∧ ωn−p−q ≤ 0. By Proposition 2.1.3
∫

B

u0ddcu1 ∧ · · · ∧ ddcup ∧ T ∧ ωn−p−q ≤
∫

B

uj
0ddcu1 ∧ · · · ∧ ddcup ∧ T ∧ ωn−p−q

=
∫

B

u1ddcuj
0 ∧ ddcu3 ∧ · · · ∧ ddcup ∧ T ∧ ωn−p−q

≤ · · · ≤
∫

B

uj
0ddcuj

1 ∧ · · · ∧ ddcuj
p ∧ T ∧ ωn−p−q

and the theorem follows from Lemma A2.1.

Remark. The above theorem is much easier to prove if all considered functions are contin-
uous. For then the convergence uj

k −→ uk, k = 0, . . . , p, is uniform and we may write

uj
0S

j − u0S = (uj
0 − u0)Sj + u0(Sj − S).

It is easy to show that both terms tend weakly to 0.

From Theorem 2.1.5 it follows in particular that for every nonnegative closed current
T ∈ D′(q,q)(Ω) the mapping

(PSH ∩ L∞loc(Ω))p 3 (u1, . . . , up) 7−→ ddcu1 ∧ · · · ∧ ddcup ∧ T ∈ D′(p+q,p+q)(Ω)

is symmetric.
One can easily compute that

(2.1.3) (ddcu)n = n!4n det
(

∂2u

∂zj∂zk

)
dλ

if u ∈ C2. We have defined the left hand-side of (2.1.3) if u ∈ PSH∩L∞loc. The right hand-
side of (2.1.3) is a nonnegative Radon measure if u ∈ PSH ∩W 2,n (that is Dαu ∈ Ln

loc if
|α| = 2).

Proposition 2.1.6. (2.1.3) holds if u is a W 2,n locally bounded plurisubharmonic function.

Proof. By Theorem 2.1.5 it is enough to show that if uε = u ∗ ρε then

det
(

∂2uε

∂zj∂zk

)
−→ det

(
∂2u

∂zj∂zk

)

weakly. In fact, it is easy to see that we even have convergence in L1
loc using the following

fact which is a consequence of the Hölder inequality: if fk
ε −→ fk in Ln

loc, k = 1, . . . , n,
then f1

ε . . . fn
ε −→ f1 . . . fn in L1

loc.
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(ddc)n is called the complex Monge-Ampère operator and we have defined it for locally
bounded plurisubharmonic functions. The following exercise shows that a good definition
of (ddcu)n as a nonnegative Borel measure for an arbitrary plurisubharmonic function u
is not possible.

Exercise For a ∈ (0, 1) set

u(z) := (− log |z1|)a (|z2|2 + · · ·+ |zn|2 − 1).

Compute the following

det
(

∂2u

∂zj∂zk
(z)

)
=

a(− log |z1|)na−2

4|z1|2 (1− a− |z2|2 − · · · − |zn|2)

if z1 6= 0. Conclude that u is plurisubharmonic on the set

{|z1| < 1, |z2|2 + · · ·+ |zn|2 < 1− a}.

Show that if a ≥ 1/n then

∫

B(0,ε)\{z1=0}

det
(

∂2u

∂zj∂zk

)
dλ = ∞.

The above example is due to Kiselman [Kis]. The first example of this kind has been
constructed by Shiffman and Taylor (see [Siu]).

Exercise Show that (ddc log+ |z|)n = (2π)ndσ/σ(∂B), where dσ is the surface measure
of the unit sphere.

The following estimate is essentially due to Cegrell [Ceg, Proposition 6.2] (see also
[Dem2, Theorem 1.8]).

Theorem 2.1.7. If K b Ω then for every v ∈ PSH(Ω) and u1, . . . , up ∈ PSH ∩ L∞(Ω),
p ≤ n we have

||v ddcu1 ∧ · · · ∧ ddcup||K ≤ CK,Ω||v||L1(Ω)||u1||L∞(Ω) . . . ||up||L∞(Ω).
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Proof. Similarly as before we may reduce the problem to the following situation: Ω = B
is the unit ball, v ≤ 0, ψ ≤ uk ≤ 0 on B and uk = ψ in a neighborhood of ∂B, k = 1, . . . , p.
If T ∈ D′(n−1,n−1)(Ω) is nonnegative and closed then

−
∫

B

v ddcuk ∧ T = −
∫

B

v ddcψ ∧ T −
∫

B

v ddc(uk − ψ) ∧ T

= −
∫

B

v ddcψ ∧ T −
∫

B

(uk − ψ)ddcuk ∧ T

≤ −
∫

B

v ddcψ ∧ T.

This implies that

−
∫

K

v ddcu1 ∧ · · · ∧ ddcup ∧ ωn−p ≤ −
∫

B

v(ddcψ)p ∧ ωn−p = −C

∫

B

v dλ

and the theorem follows from Lemma 1.3.8.

Exercise Show that if f is C1 then df ∧ dcf ≥ 0 but (df ∧ dcf)2 = 0.

Theorem 2.1.8. Let Ω be a bounded domain in Cn. Assume that u1, . . . , un, v, w ∈
PSH ∩ L∞(Ω) are such that u1, . . . , un ≤ 0, v ≤ w and limz→∂Ω(w(z)− v(z)) = 0. Then

(2.1.4)

∫

Ω

(w − v)nddcu1∧ · · · ∧ ddcun

≤ n!||u1||L∞(Ω) . . . ||un−1||L∞(Ω)

∫

Ω

|un|(ddcv)n

and, for every p > n,

(2.1.5)

∫

Ω

(w − v)pddcu1 ∧ · · · ∧ ddcun

≤ p(p− 1) . . . (p− n + 1)||u1||L∞(Ω) . . . ||un||L∞(Ω)

∫

Ω

(w − v)p−n(ddcv)n.

Proof. For ε > 0 set wε = max{v, w − ε}, then wε ↑ w as ε ↓ 0 and wε = v in a
neighborhood of ∂Ω. By the Lebesgue monotone convergence theorem we may therefore
assume that w = v in a neighborhood of ∂Ω. Set vj := v ∗ ρ1/j and wj := w ∗ ρ1/j . By
Theorem 2.1.5

|un|(ddcvj)n −→ |un|(ddcv)n

weakly, and

(2.1.6) (wj − vj)p−n(ddcvj)n −→ (w − v)p−n(ddcv)n,
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provided that p = n + 1. Right now, when proving (2.1.5), we shall restrict ourselves
only to this case and postpone the general one to Section 2.2, after we have shown that
plurisubharmonic functions are quasi-continuous. In the proof of quasi-continuity we will
use (2.1.5) only for p = n + 1.

We may therefore reduce the proof to the case when w, v are smooth and equal near
∂Ω. For a nonnegative closed T ∈ D′(n−1,n−1)(Ω) we then have

∫

Ω

(w − v)pddcu1 ∧ T =
∫

Ω

u1ddc(w − v)p ∧ T.

Since

−ddc(w − v)p = −p(p− 1)(w − v)p−2d(w − v) ∧ dc(w − v)− p(w − v)p−1ddc(w − v)
≤ p(w − v)p−1ddcv,

we obtain
∫

Ω

(w − v)pddcu1 ∧ T ≤ p

∫

Ω

|u1|(w − v)p−1ddcv ∧ T ≤ p||u1||L∞(Ω)

∫

Ω

(w − v)p−1ddcv ∧ T.

Iteration of this easily gives (2.1.4) and (2.1.5) (provided that (2.1.6) holds).

The first part of Theorem 2.1.8 was proved in [BÃlo1].
Let u, v be plurisubharmonic and locally bounded. For a nonnegative closed current

T of bidegree (n − 1, n − 1) we want to define du ∧ dcv ∧ T . If u, v are smooth then
du ∧ dcv ∧ T = dv ∧ dcu ∧ T (because they are of full degree), hence by polarization we
may assume that u = v and u ≥ 0. Then we set

du ∧ dcu ∧ T :=
1
2
ddcu2 ∧ T − u ddcu ∧ T

so that it agrees with the smooth case. In particular, du ∧ dcv ∧ T is a complex measure.
Directly from this definition and Theorem 2.1.5 we obtain the following approximation
result:

Theorem 2.1.9. Let uj , vj and wj
k, k = 1, . . . , p, be sequences of locally bounded pluri-

subharmonic functions decreasing to u, v, wk ∈ PSH ∩ L∞loc respectively. Then, if T is a
nonnegative closed current of bidegree (n−p−1, n−p−1), we have the weak convergence
of measures

duj ∧ dcvj ∧ ddcwj
1 ∧ · · · ∧ ddcwj

p −→ du ∧ dcv ∧ ddcw1 ∧ · · · ∧ ddcwp.
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The next two theorems were proved in [BÃlo2]:

Theorem 2.1.10. Assume that u, v ∈ PSH ∩ L∞loc and 2 ≤ p ≤ n. Then

(ddc max{u, v})p

= ddc max{u, v} ∧
p−1∑

k=0

(ddcu)k ∧ (ddcv)p−1−k −
p−1∑

k=1

(ddcu)k ∧ (ddcv)p−k.

Proof. We may assume that u, v are smooth. A simple inductive argument reduces the
proof to the case p = 2. Set w := max{u, v} and, for ε > 0, wε := max{u + ε, v}. In
an open set {u + ε > v} we have wε − u = ε, whereas w − v = 0 in {u < v}. Therefore
ddc(wε − u) ∧ ddc(w − v) = 0 for every ε > 0 and taking the limit we conclude that
ddc(w − u) ∧ ddc(w − v) = 0.

Theorem 2.1.11. Assume that uk, k = 1, 2, is a nonnegative plurisubharmonic function
in a domain Ωk ⊂ Cnk , such that

∫

{uk>0}
(ddcuk)nk = 0, k = 1, 2.

Then, treating u1, u2 as functions on Ω1 × Ω2, we have

(ddc max{u1, u2})n1+n2 = (ddcu1)n1 ∧ (ddcu2)n2 .

Proof. Set w := max{u1, u2} and α := u1 − u2. Since (ddcuk)nk+1 = 0, k = 1, 2, and by
Theorem 2.1.10 we have

(2.1.7)
(ddcw)n1+n2 = ddcw∧ [

(ddcu1)n1−1 ∧ (ddcu2)n2 + (ddcu1)n1 ∧ (ddcu2)n2−1
]

− (ddcu1)n1 ∧ (ddcu2)n2 .

Let χ : R→ [0,+∞) be smooth and such that χ(x) = 0 if x ≤ −1, χ(x) = x if x ≥ 1 and
0 ≤ χ′ ≤ 1, χ′′ ≥ 0 everywhere. Define

ψj := u2 +
1
j
χ(jα).

We can easily check that ψj ↓ w as j ↑ ∞. An easy computation gives

ddc(χ(jα)/j) = χ′(jα)ddcα + jχ′′(jα)dα ∧ dcα.

Therefore
ddcψj = χ′(jα)ddcu1 + (1− χ′(jα))ddcu2 + jχ′′(jα)dα ∧ dcα
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and, in particular, ψj is plurisubharmonic.
Using the hypothesis on u1, u2 we may compute

ddcψj ∧ (ddcu1)n1−1 ∧ (ddcu2)n2

=
[
χ′(0)(ddcu1)n1 + jχ′′(ju1)du1 ∧ dcu1 ∧ (ddcu1)n1−1

] ∧ (ddcu2)n2

= ddc(χ(ju1)/j) ∧ (ddcu1)n1−1 ∧ (ddcu2)n2 .

Since χ(ju1)/j ↓ u1 as j ↑ ∞, it follows that

ddcw ∧ (ddcu1)n1−1 ∧ (ddcu2)n2 = (ddcu1)n1 ∧ (ddcu2)n2

and, similarly,

ddcw ∧ (ddcu1)n1 ∧ (ddcu2)n2−1 = (ddcu1)n1 ∧ (ddcu2)n2 .

This, together with (2.1.7), finishes the proof.

2.2.Quasi-continuity of plurisubharmonic functions and applications

If Ω is open in Cn and E is a Borel subset of Ω, we define

c(E) = c(E, Ω) := sup
{∫

E

(ddcu)n : u ∈ PSH(Ω),−1 ≤ u ≤ 0
}

.

c is called a relative Monge-Ampère capacity. As well as almost all results of this section
it comes from [BT2]. By the Chern-Levine-Nirenberg inequality c(E, Ω) is finite if E b Ω.

Proposition 2.2.1. i) If Ω ⊂ B(z0, R) then c(E, Ω) ≥ 4nn!R−2nλ(E);
ii) If E1 ⊂ E2 ⊂ Ω1 ⊂ Ω2 then c(E1, Ω2) ≤ c(E2, Ω1);
iii) c(

⋃∞
j=1 Ej) ≤

∑∞
j=1 c(Ej);

iv) If E ⊂ ω b Ω1 ⊂ Ω2 b Cn then c(E, Ω1) ≤ Cω,Ω1,Ω2c(E, Ω2);
v) If Ej ↑ E then limj→∞ c(Ej) = c(E).

Proof. i) It is enough to take u(z) = |z − z0|2/R2 − 1.
ii) is clear.
iii) We may write

c(
⋃

Ej) = sup
u

∑

j

∫

Ej

(ddcu)n ≤
∑

j

sup
u

∫

Ej

(ddcu)n =
∑

j

c(Ej).

iv) If we cover ω by finite number of balls contained in Ω1 then using ii) and iii) we
may reduce the problem to the case when ω = B(z0, r) and Ω1 = B(z0, R1) are concentric
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balls. Take u ∈ PSH(Ω1) such that −1 ≤ u ≤ 0. If ψ(z) = (R2
1 − r2)−1(|z − z0|2 − R2

1)
then ψ = 0 on ∂Ω1 and ψ ≤ −1 on ω. Set

ũ =
{

max{u, ψ} on Ω1,

ψ on Ω2 \ Ω1

and v = (a + 1)−1(ũ − a), where a = ||ψ||Ω2 . Then v ∈ PSH(Ω2), −1 ≤ v ≤ 0 and
(ddcv)n = (a + 1)−n(ddcu)n on ω, hence c(E, Ω1) ≤ (a + 1)−nc(E2, Ω2).

v) We may write

lim
j→∞

c(Ej) = sup
j,u

∫

Ej

(ddcu)n = c(E).

The following result shows that plurisubharmonic functions are quasi-continuous with
respect to c.

Theorem 2.2.2. Let v be a plurisubharmonic function on an open subset Ω of Cn. Then
for every ε > 0 there exists an open subset G of Ω such that c(G, Ω) < ε and v is continuous
on Ω \G.

For the proof of Theorem 2.2.2 we need two propositions.

Proposition 2.2.3. If v ∈ PSH(Ω) and K b Ω then

lim
j→∞

c(K ∩ {v < −j},Ω) = 0.

Proof. Take u ∈ PSH(Ω) with −1 ≤ u ≤ 0 and an open ω such that K b ω b Ω. By
Theorem 2.1.7

∫

K∩{v<−j}

(ddcu)n ≤ 1
j

∫

K

|v|(ddcu)n ≤ CK,ω

j
||v||L1(ω).

Proposition 2.2.4. Let vj ∈ PSH ∩ L∞loc(Ω) be a sequence decreasing to v ∈ PSH ∩
L∞loc(Ω). Then for every K b Ω and δ > 0

lim
j→∞

c(K ∩ {vj > v + δ}, Ω) = 0.
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Proof. We may easily reduce it to the case when Ω is a ball. Using Proposition 2.2.1.iv
and similarly as in the proof of Theorem 2.1.5 we may also assume that vj = v = Aψ in a
neighborhood of ∂B, where B = B(z0, R) = Ω and ψ(z) = |z−z0|2−R2. Let u ∈ PSH(B)
be such that −1 ≤ u ≤ 0. Then by Theorem 2.1.8 (with p = n + 1)

∫

K∩{vj>v+δ}

(ddcu)n ≤ 1
δn+1

∫

B

(vj − v)n+1(ddcu)n ≤ 1
δn+1

∫

B

(vj − v)(ddcv)n

and the last term tends to 0 by the Lebesgue monotone convergence theorem.

Proof of Theorem 2.2.2. Take ω b Ω. We claim that it is enough to show that there
exists an open G ⊂ ω such that c(G,Ω) < ε and v is continuous on ω \ G. Indeed, we
may then take ωj b Ω with ωj ↑ Ω and open Gj ⊂ ωj such that c(Gj ,Ω) < 2−jε and v is
continuous on ωj \ Gj . Setting G =

⋃
Gj we obtain c(G) < ε and for every open U b Ω

we have U \G ⊂ ωj \Gj for some j, thus v is continuous on Ω \G.
Let G1 = ω ∩ {v < −j}, where j is such that c(G1,Ω) < ε/2 (by Proposition 2.2.3).

Set ṽ = max{v,−j} and let vk be a sequence of continuous plurisubharmonic functions
defined in a neighborhood of ω decreasing to ṽ. By Proposition 2.2.4 for every j = 2, 3, . . .
we can find k(j) such that for Gj = ω ∩ {vk(j) > v + δ} we have c(Gj ,Ω) < 2−jε. If
G =

⋃
Gj then c(G, Ω) < ε and on ω \G we have uniform convergence vk(j) −→ ṽ = v.

In what follows we shall derive several useful applications of the quasi-continuity of
plurisubharmonic functions. The first one is a generalization of Theorem 2.1.5 to sequences
of locally bounded plurisubharmonic functions increasing to a plurisubharmonic function
almost everywhere (with respect to the Lebesgue measure). As well as almost all results of
this chapter it is due to Bedford and Taylor [BT2]. It was Cegrell [Ceg] who observed that
it can be proved without using the solution of the Dirichlet problem and that a complicated
inductive procedure on the dimension from [BT2] can be avoided.

Theorem 2.2.5. Let uj
0, u

j
1, . . . , u

j
p ∈ PSH ∩ L∞loc, 0 ≤ p ≤ n, j = 1, 2, . . . , be monotone

sequences (either decreasing or increasing) converging almost everywhere to u0, . . . , up ∈
PSH ∩ L∞loc respectively. Then

uj
0ddcuj

1 ∧ · · · ∧ ddcuj
p −→ u0ddcu1 ∧ · · · ∧ ddcup

weakly.

Proof. We will modify the proof of Theorem 2.1.5. In the same way as there we may
reduce the problem to the situation where all considered functions are defined in a ball
B = B(z0, r), ≥ Aψ in B and equal to Aψ in a neighborhood of ∂B, where A > 0 and
ψ(z) = |z− z0|2− r2. The proof is by induction in p. Of course the theorem holds if p = 0.
Let therefore p ≥ 1 and assume the theorem is true for p− 1. It means in particular that

Sj := ddcuj
1 ∧ · · · ∧ ddcuj

p −→ ddcu1 ∧ · · · ∧ ddcup =: S
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weakly. By the Chern-Levine-Nirenberg inequality it is enough to show that if uj
0S

j −→ Θ
weakly then Θ = u0S. If uj

0 is decreasing then Lemma A2.2 implies that Θ ≤ u0S. If
uj

0 is increasing then uj
0S

j ≤ u0Sj and again by Lemma A2.2 every weak limit of u0S
j is

≤ u0S. Thus also in this case we have Θ ≤ u0S. By Corollary 1.3.9 it therefore remains
to show that

∫
B

(Θ− u0S) ∧ ωn−p ≥ 0, that is that

(2.2.1) lim
j→∞

∫

B

uj
0S

j ∧ ωn−p ≥
∫

B

u0S ∧ ωn−p.

Using quasi-continuity of plurisubharmonic functions we will show that for every bounded
plurisubharmonic function u in B which is equal to Aψ in a neighborhood of ∂B we have

(2.2.2) lim
j→∞

∫

B

uSj ∧ ωn−p =
∫

B

uS ∧ ωn−p.

First we show how (2.2.2) implies (2.2.1). If uj
0 is decreasing then uj

0 ≥ u0 and (2.2.1)
follows directly from (2.2.2) applied to u0. Assume that uj

0 is increasing. Then for every
k by (2.2.2) and Proposition 2.1.3 we have

lim
j→∞

∫

B

uj
0S

j ∧ ωn−p ≥ lim
j→∞

∫

B

uk
0Sj ∧ ωn−p

=
∫

B

uk
0S ∧ ωn−p

=
∫

B

u1ddcuk
0 ∧ ddcu2 ∧ · · · ∧ ddcup ∧ ωn−p.

If we now let k tend to ∞ and use (2.2.2) again, we get (2.2.1).
Hence, it remains to prove (2.2.2). By Theorem 2.2.2 for every ε > 0 we can find an

open G b B such that u is continuous on F := B \G and c(G, B) < ε. For simplicity we
denote µj = Sj ∧ ωn−p and µ = S ∧ ωn−p. Write

∫

B

(u dµj − u dµ) =
∫

G

+
∫

F

.

We have µj ≤ (ddc(uj
1 + · · ·+ uj

p + (n− p)ψ))n and

∣∣∣∣
∫

G

(u dµj − u dµ)
∣∣∣∣ ≤ C1ε

where C1 is a constant independent of j and ε. Let ϕ be a continuous function in B such
that ϕ = u on F and −A ≤ ϕ ≤ 0 in B. Then, since u = ϕ = 0 on ∂B,

−
∫

F

u dµ = −
∫

F

ϕ dµ ≥ lim
j→∞

(
−

∫

F

ϕdµj

)
= − lim

j→∞

∫

F

u dµj .
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On the other hand
−

∫

F

u dµ ≤ −
∫

B

ϕdµ = − lim
j→∞

∫

B

ϕdµj

and
−

∫

B

ϕdµj = −
∫

F

−
∫

G

≤ −
∫

F

u dµj + C2ε.

We infer

lim
j→∞

∣∣∣∣
∫

B

(u dµj − u dµ)
∣∣∣∣ ≤ (C1 + C2)ε

and (2.2.2) follows since ε was arbitrary.

We can also finish the proof of Theorem 2.1.8:

End of proof of Theorem 2.1.8. We have to show that (2.1.6) holds for arbitrary
p > n. It is no loss of generality to assume that −1 ≤ v, w ≤ 0. Let Ω′ be open and such
that {v < w} ⊂ Ω′ b Ω and let ε > 0. By Theorem 2.2.2 we can find an open G ⊂ Ω
with c(G, Ω) < ε such that v, w are continuous on F = Ω \ G. Set fj := (wj − vj)p−n,
f := (w − v)p−n, µj := (ddcvj)n, µ := (ddcv)n, G′ := G ∩ Ω′ and F ′ := F ∩ Ω′. We have

∫

Ω′
(fjdµj − f dµ) =

∫

G′
(fjdµj − f dµ) +

∫

F ′
(fj − f)dµj +

∫

F ′
f(dµj − dµ).

Since fj and f have compact supports in Ω′, in the same way as in the proof of Theorem
2.2.5 we can show that the first and the third terms tend to 0, whereas on F ′ fj −→ f
uniformly and thus so does the second term.

The next application is the domination principle.

Theorem 2.2.6. Assume that Ω is a bounded domain in Cn. Let u, v ∈ PSH ∩ L∞(Ω)
be such that (u− v)∗ ≥ 0 on ∂Ω. Then

∫

{u<v}

(ddcv)n ≤
∫

{u<v}

(ddcu)n.

Proof. If instead of u we consider u + δ, δ > 0, then {u + δ < v} ↑ {u < v} as δ ↓ 0 and
it follows that we may assume that (u− v)∗ ≥ δ > 0 on ∂Ω. Then {u < v} b Ω.

First we assume that u and v are continuous. Then Ω′ := {u < v} is open, u, v are
continuous on Ω′ and u = v on ∂Ω′. For ε > 0 set uε := max{u + ε, v}. Then uε ↓ v on Ω′

as ε ↓ 0 and uε = u + ε in a neighborhood of ∂Ω′. By the Stokes theorem
∫

{u<v}

(ddcuε)n =
∫

{u<v}

(ddcu)n
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and by Theorem 2.1.5 ∫

{u<v}

(ddcv)n ≤ lim
ε→0

∫

{u<v}

(ddcuε)n,

hence the theorem follows if u and v are continuous.
Let now u and v be arbitrary and let ω be a domain such that {u ≤ v+δ/2} b ω b Ω.

There are sequences uj and vk of smooth plurisubharmonic functions in a neighborhood of
ω decreasing to u and v respectively and such that uj ≥ vk on ∂ω for every j, k. We may
assume that −1 ≤ uj , vk ≤ 0. Take ε > 0 and let G be open in Ω such that c(G, Ω) < ε
and u, v are continuous on F = Ω \G. There is a continuous ϕ on Ω such that v = ϕ on
F . We have ∫

{u<v}

(ddcv)n = lim
j→∞

∫

{uj<v}

(ddcv)n.

Since {uj < v} ⊂ {uj < ϕ} ∪G and since {uj < ϕ} is open
∫

{uj<v}

(ddcv)n ≤
∫

{uj<ϕ}

+
∫

G

≤ lim
k→∞

∫

{uj<ϕ}

(ddcvk)n + ε.

From {uj < ϕ} ⊂ {uj < v} ∪G and {uj < v} ⊂ {uj < vk} it follows that
∫

{uj<ϕ}

(ddcvk)n ≤
∫

{uj<v}

+
∫

G

≤
∫

{uj<vk}

(ddcvk)n + ε.

By the first part of the proof
∫

{uj<vk}

(ddcvk)n ≤
∫

{uj<vk}

(ddcuj)n,

thus
∫

{u<v}

(ddcv)n ≤ lim
j→∞

lim
k→∞

∫

{uj<vk}

(ddcuj)n + 2ε ≤ lim
j→∞

∫

{uj≤v}

(ddcuj)n + 2ε.

Further, ∫

{uj≤v}

(ddcuj)n ≤
∫

{uj≤v}∩F

(ddcuj)n + ε

and, since the set {u ≤ v} ∩ F is compact and {uj ≤ v} ⊂ {u ≤ v},

lim
j→∞

∫

{uj≤v}∩F

(ddcuj)n ≤
∫

{u≤v}∩F

(ddcu)n ≤
∫

{u≤v}

(ddcu)n.
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Because ε > 0 was arbitrary, we obtain
∫

{u<v}

(ddcv)n ≤
∫

{u≤v}

(ddcu)n.

This implies that for every η > 0
∫

{u+η<v}

(ddcv)n ≤
∫

{u+η≤v}

(ddc(u + η))n =
∫

{u+η≤v}

(ddcu)n.

The theorem follows since {u + η < v} ↑ {u < v} and
{u + η ≤ v} ↑ {u < v} as η ↓ 0.

Corollary 2.2.7. Let Ω be a bounded domain in Cn and u, v ∈ PSH ∩ L∞(Ω) be such
that u ≤ v and limz→∂Ω u(z) = limz→∂Ω v(z) = 0. Then

∫

Ω

(ddcv)n ≤
∫

Ω

(ddcu)n.

Proof. For λ > 1 we have λu < v in Ω, thus the corollary is a direct consequence of
Theorem 2.2.6.

Exercise Show that (ddc log+(|z|/R))n = (2π)ndσ where dσ is the unitary surface mea-

sure of ∂B(0, R).

The domination principle also easily implies the comparison principle.

Corollary 2.2.8. Let Ω, u and v be as in Theorem 2.2.6. Assume moreover that (ddcu)n ≤
(ddcv)n. Then v ≤ u.

Proof. Set ψ(z) = |z|2 −M , where M is so big that ψ < 0 in Ω. Suppose that the set
{u < v} is nonempty. Then for some ε > 0 {u < v + εψ} is nonempty and thus of positive
Lebesgue measure. By Theorem 2.2.6

∫

{u<v+εψ}

(ddcu)n ≥
∫

{u<v+εψ}

(ddc(v + εψ))n

≥
∫

{u<v+εψ}

(ddcv)n + 4nn!εnλ ({u < v + εψ})

>

∫

{u<v+εψ}

(ddcv)n
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which is a contradiction.

Corollary 2.2.9. If Ω is a bounded domain in Cn and u, v ∈ PSH ∩L∞(Ω) are such that
(ddcu)n = (ddcv)n and limz→∂Ω(u(z)− v(z)) = 0 then u = v.

The next result is due to Demailly [Dem3].

Theorem 2.2.10. For u, v ∈ PSH ∩ L∞loc

(ddc max{u, v})n ≥ χ{u≥v}(ddcu)n + χ{u<v}(ddcv)n.

Proof. It is enough to show this inequality of measures on the set {u ≥ v}, since then we
can exchange u and v to get it on the complement. Let K ⊂ {u ≥ v} be compact. We may
assume that u, v are defined in a neighborhood of Ω and −1 ≤ u, v ≤ 0. Let uj = u ∗ ρ1/j ,
vj = v ∗ ρ1/j be the regularizations of u, v, then −1 ≤ uj , vj ≤ 0 in Ω. By Theorem 2.2.2
there is an open G ⊂ Ω such that c(G, Ω) ≤ ε and u, v are continuous on Ω \ G. The
convergences uj −→ u and vj −→ v are uniform on compact subsets of Ω \ G, thus for
every δ > 0 there is an open neighborhood U of K such that uj + δ ≥ vj on U \ G for j
big enough. Hence

∫

K

(ddcu)n ≤ lim
j→∞

∫

U

(ddcuj)n ≤ ε + lim
j→∞

∫

U\G
(ddcuj)n

= ε + lim
j→∞

∫

U\G
(ddc max{uj + δ, vj})n.

If we let ε −→ 0 and j −→∞, we get
∫

K

(ddcu)n ≤
∫

U

(ddc max{u + δ, v})n

and, if U ↓ K, ∫

K

(ddcu)n ≤
∫

K

(ddc max{u + δ, v})n.

The desired estimate now follows if we let δ −→ 0.

Note that if u, v are continuous then Theorem 2.2.10 is much easier to prove. For then
it is enough to show the inequality on the set {u = v} and for compact K ⊂ {u = v} we
have ∫

K

(ddc max{u, v})n ≥ lim
ε↓0

∫

K

(ddc max{u + ε, v})n =
∫

K

(ddcu)n.

49



2.3. The Dirichlet problem

The main goal of this section is to prove the following theorem due essentially to
Bedford and Taylor [BT1], [BT2].

Theorem 2.3.1. Let u be a locally bounded plurisubharmonic function in an open subset
Ω of Cn. Then u is maximal in Ω iff (ddcu)n = 0. In particular, being a locally bounded
maximal plurisubharmonic function is a local property.

The main tool in proving Theorem 2.3.1 will be the following regularity result.

Theorem 2.3.2. Let P be a polydisk and assume that f ∈ C1,1(∂P ) (that is f is C1,1 in
a neighborhood of ∂P ) is such that (2.3.2) holds on P . Then uf,P ∈ C1,1(P ).

Proof. By Proposition 1.4.4 u := uf,P ∈ PSH(P ) ∩ C(P ). We may assume that P =
(∆(0, 1))n is the unit polydisk. Take r < 1 and let Pr = (∆(0, r))n. For z ∈ P , a ∈ P and
h small enough define

Ta,h(z) = T (a, h, z) =
(

h1 + (1− |a1|2 − a1h1)z1

1− |a1|2 − a1h1 + h1z1

, . . . ,
hn + (1− |an|2 − anh1)zn

1− |an|2 − anhn + hnzn

)
.

Then T is C∞ smooth in a neighborhood of the set P r × P (1−r)/2 × P and Ta,h is a
holomorphic automorphism of P such that Ta,h(a) = a + h and Ta,0(z) = z. Set

V (a, h, z) := u(Ta,h(z))

and
va,h(z) :=

1
2
(V (a, h, z) + V (a,−h, z)).

va,h ∈ PSH(P )∩C(P ) and we claim that for K big enough we have va,h −K|h|2 ≤ u for
every a ∈ Pr and h ∈ P(1−r)/2. It is enough to show that va,h − K|h|2 ≤ f on ∂P and
since the both functions are continuous it is enough to prove this inequality on

R :=
n⋃

j=1

∆j−1 × ∂∆×∆n−j .

But this follows from Proposition A1.5, since V is C1,1 on Pr×P(1−r)/2×R and |D2V | ≤ K
there, where K depends only on n, r and sup |D2f |. Therefore, for z = a we obtain

u(a + h) + u(a− h)− 2u(a) ≤ K|h|2
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for a ∈ Pr and h ∈ P(1−r)/2. To finish the proof of Theorem 2.3.2 it suffices to use the
following fact.

Proposition 2.3.3. Let Ω be a bounded domain in Cn. Assume that u is a plurisub-
harmonic function in a neighborhood of Ω such that for a positive constant K and h
sufficiently small it satisfies the estimate

u(z + h) + u(z − h)− 2u(z) ≤ K|h|2, z ∈ Ω.

Then u is C1,1 in Ω and |D2u| ≤ K there.

Proof. Let uε = u ∗ ρε denote the standard regularizations of u. Then for z ∈ Ωε := {z ∈
Ω : dist (z, ∂Ω) > ε} and h sufficiently small we have

uε(z + h) + uε(z − h)− 2uε(z) ≤ K|h|2.
This implies that

(2.3.1) D2uε.h
2 ≤ K|h|2.

We have

D2uε.h
2 =

n∑

j,k=1

(
∂2uε

∂zj∂zk
hjhk + 2

∂2uε

∂zj∂zk
hjhk +

∂2uε

∂zj∂zk
hjhk

)

and, since uε is plurisubharmonic,

D2uε.h
2 + D2uε.(ih)2 = 4

n∑

j,k=1

∂2uε

∂zj∂zk
hjhk ≥ 0.

Therefore by (2.3.1)
D2uε.h

2 ≥ −D2uε.(ih)2 ≥ −K|h|2.
This implies that |D2uε| ≤ K on Ωε and the proposition follows from Theorem 1.1.13.

Exercise Let f ∈ C(∂P ), where P is a polydisk. Show that there exists v ∈ PSH(P ) ∩
C(P ) with v|∂P = f iff f is subharmonic on every analytic disk embedded in ∂P .

One can modify the proof of Theorem 2.3.2 using the holomorphic automorphisms
of the the unit ball to get an analogous regularity in euclidean balls Exercise (this is an
original result from [BT1]). The following example of Gamelin and Sibony shows that it
is not possible to get a better regularity.

Exercise Let B be the unit ball in C2. For (z, w) ∈ ∂B, set

f(z, w) :=
(|z|2 − 1/2

)2
=

(|w|2 − 1/2
)2

.
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In particular, f ∈ C∞ (∂B). Show that

u(z, w) = uf,B(z, w) =
(
max{0, |z|2 − 1/2, |w|2 − 1/2})2

,

so that u is C1,1 but not C2.

Proof of Theorem 2.3.1. If u ∈ PSH ∩L∞loc(Ω) is such that (ddcu)n = 0 then it follows
immediately from the comparison principle that u is maximal in Ω. Assume therefore
that u is maximal in a neighborhood of a polydisk P . Let fj ∈ C1,1(∂P ) be a sequence
deacresing to u on ∂P , then ufj ,P ↓ u on P by Proposition 1.4.9. Hence, by Theorem 2.3.2
we may assume that u is C1,1 in P and we have to show that (ddcu)n = 0 there. By the
Rademcher theorem u is twice differentiable almost everywhere in the classical sense and,
by Proposition 2.1.6, (2.1.3) holds. Let z0 ∈ P be such that D2u(z0) exists and assume
that det(∂2u/∂zj∂zk) > 0. The Taylor expansion gives

u(z0 + h) = Re P (h) +
n∑

j,k=1

∂2u

∂zj∂zk
(z0)hjhk + o(|h|2) ≥ Re P (h) + c|h|2 + o(|h|2),

where

P (h) = u(z0) + 2
n∑

j=1

∂u

∂zj
(z0)hj +

n∑

j,k=1

∂2u

∂zj∂zk
(z0)hjhk,

and c > 0. We can find r > 0 such that u(z0+h) > Re P (h) if |h| = r but u(z0) = Re P (0)
which contradicts the maximality of u.

Theorem 2.3.1 allows to use the methods from the theory of the complex Monge-
Ampère operator in order to show certain elementary properties of maximal plurisub-
harmonic functions. For example, Theorem 2.2.5 immediately gives the following:

Theorem 2.3.4. Let uj be a sequence of maximal plurisubharmonic functions increasing
to a plurisubharmonic function u almost everywhere. Then u is maximal.

As a direct application of Theorem 2.1.10 we can get a result from [Zer]:

Theorem 2.3.5. Assume that uj , j = 1, 2, is a maximal plurisubharmonic function in
domain Ωj ⊂ Cnj . Then max{u1, u2} is maximal in Ω1 × Ω2.

Theorem 2.3.1 also makes it easy to solve the homogeneous Dirichlet problem for the
complex Monge-Ampère operator

(2.3.2)





u ∈ PSH ∩ L∞(Ω)
(ddcu)n = 0
u∗ = u∗ = f on ∂Ω.
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Here Ω is a bounded domain in Cn and f ∈ C(∂Ω). By Corollary 2.2.9 the solution, if
exists, must be unique and by Corollary 2.2.8 it must be equal to uf,Ω (as defined by
(1.4.1)). By Theorem 1.4.3 the solution has to be continuous on Ω. Theorem 2.3.1 coupled
with the results of section 1.4 immediately gives the following.

Theorem 2.3.6. Assume that Ω b Cn is a regular domain. Let f ∈ C(∂Ω) be extendable
to a plurisubharmonic, continuous function on Ω (that is (1.4.3) holds). Then there exists
a unique continuous solution of (2.3.2).

In particular, the problem (2.3.2) has a continuous solution for every f ∈ C(∂Ω) iff Ω
is B-regular.
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III. Pluripolar sets and extremal plurisubharmonic functions

3.1. Pluripolar sets and the relative extremal function

A set P ⊂ Cn is called pluripolar if for every z0 ∈ P there exists an open neighborhood
U of z0 and u ∈ PSH(U) such that P ∩ U ⊂ {v = −∞}. Let Ω be an open subset of
Cn. Subsets of sets of the form {u < u∗}, where u = supα uα and {uα} is a family of
plurisubharmonic functions in Ω locally uniformly bounded above, are called negligible in
Ω.

Observe that negligible sets are of Lebesgue measure 0 (by Theorem 1.2.3.viii). Also,
if E ⊂ {u = −∞} for some u ∈ PSH(Ω) with u ≤ 0 then E is negligible in Ω. Indeed,
{u = −∞} = {v < v∗}, where v = sup

α∈(0,1)

αu.

Also note that by Proposition 2.2.3, if u ∈ PSH ∩ L∞loc, then (ddcu)n takes no mass
at pluripolar sets.

The main goal of this section is to prove the following two theorems:

Theorem 3.1.1. If P ⊂ Cn is pluripolar then there exists u ∈ PSH(Cn) such that
P ⊂ {u = −∞}. Moreover, u can be chosen to have a logarithmic growth, that is there is
C > 0 such that

u(z) ≤ log+ |z|+ C, z ∈ Cn.

Theorem 3.1.2. Negligible sets are pluripolar.

The first part of Theorem 3.1.1 is due to Josefson [Jos] and the logarithmic estimate
was obtained by Siciak [Sic2]. Theorem 3.1.2 as well as the proof of Theorem 3.1.1 below
is due to Bedford and Taylor [BT2].

The main tool in proving Theorems 3.1.1 and 3.1.2 will be a relative extremal function
which we already encountered in the proof of Theorem 1.4.6: if E is a subset of a domain
Ω in Cn then we set

uE = uE,Ω = sup{v ∈ PSH(Ω) : v ≤ 0, v|E ≤ −1}.

Here are the basic properties.
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Proposition 3.1.3. i) If E1 ⊂ Ω1 and E2 ⊂ Ω2 are such that E1 ⊂ E2 and Ω1 ⊂ Ω2 then
uE1,Ω1

≥ uE2,Ω2
on Ω1;

ii) u∗E is maximal in Ω \ E;

iii) u∗P ≡ 0 iff there is u ∈ PSH(Ω) such that u ≤ 0 and P ⊂ {u = −∞};
iv) u∗E∪P = u∗E if P is as in iii);

v) If Kj is a sequence of compact subsets of Ω decreasing to K then uKj
↑ uK ;

vi) If K ⊂ Ω is compact and Ω is bounded and hyperconvex then the supremum in
the definition of uK,Ω can be taken only over continuous functions. In particular, in such
a case uK,Ω is lower semicontinuous;

vii) If K, Ω are as in vi) and K is such that Ω \ K is a regular domain (in the real
sense), then uK,Ω is continuous on Ω (with uK,Ω = 0 on ∂Ω).

Proof. i) is obvious.
ii) By the Choquet lemma (Lemma A2.3) there is a sequence uj ∈ PSH(Ω) such that

uj ≤ 0, uj |K ≤ −1 and u∗E = supj uj . Considering the functions max{u1, . . . , uj} instead
of uj we may assume that uj is increasing to u∗E almost everywhere. If B b Ω \ E is a
ball then by Proposition 1.4.10 we may assume that uj are maximal in B. Theorem 2.3.4
gives ii).

iii) If u = −∞ on P then εu|P ≤ −1 for every ε > 0, hence uP = 0 on {u > −∞}
and consequently u∗P ≡ 0. Conversely, if u∗P ≡ 0 then by the Choquet lemma there exists
a sequence vj ∈ PSH(Ω) increasing to 0 almost everywhere and such that vj ≤ 0 and
vj |P ≤ −1. Choosing a subsequence if necessary, we may assume that

∫
B
|vj |dλ ≤ 2−j for

a fixed B b Ω. Therefore the function u :=
∑

j vj is plurisubharmonic and u = −∞ on P .
iv) We have to show that v ≤ u∗E∪P for every v ∈ PSH(Ω) with v ≤ 0 and v|E ≤ −1.

If u is as in iii), then v + εu ≤ −1 on E ∪ P for every ε > 0. Thus v + εu ≤ uE∪P and
v ≤ uE∪P almost everwhere, hence v ≤ u∗E∪P everywhere.

v) We have uKj
↑ w ≤ uK . It remains to show that v ≤ w for every v ∈ PSH(Ω)

with v ≤ 0 and v|K ≤ −1. For every ε > 0 the set {v < −1 + ε} is an open neighborhood
of K, so there is j such that v|Kj ≤ −1 + ε, hence v − ε ≤ uKj

≤ w.

vi) Let ψ ∈ PSH(Ω)∩C(Ω) be such that ψ|∂Ω = 0 and ψ|K ≤ −1. Take v ∈ PSH(Ω)
with ψ ≤ v ≤ 0, v|K = −1 and fix δ > 0. If ε > 0 is small enough, the regularization
vε = v ∗ ρε is defined in a neighborhood of {ψ ≤ −δ}. From an elementary property of
upper semicontinuous functions it follows that m(ε) := maxK vε ↓ −1 as ε ↓ 0. Set

w :=
{

max{ψ, vε − (m(ε) + 1)− δ}, if ψ ≤ −δ,

ψ otherwise.

Then w is continuous, plurisubharmonic in Ω, w ≤ 0 and w|K ≤ −1. Thus, if ε is
sufficiently small, then on {ψ ≤ −δ} we have v − 2δ ≤ vε − 2δ ≤ w ≤ uK,Ω.

vii) The same as the proof of Theorem 1.4.6.

Exercise Prove that if G ⊂ Ω is open then uG = u∗G.
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Exercise Let E ⊂ Ω be such that E ∩ ∂E is compact. Show that there exists a sequence
of open set Gj ⊂ Ω decreasing to E such that uGj ↑ uE .

Exercise Let K and Ω be as in vi). Show that the PSH(Ω)-hull of K is given by K̂Ω =
{uK,Ω = −1} and u

K̂Ω,Ω
= uK,Ω.

If c is a set function defined on Borel subsets of Ω then for arbitrary E ⊂ Ω we set

c∗(E) := inf
E⊂G, G open

c(G)

c∗(E) := sup
K⊂E, K compact

c(K).

Theorem 3.1.4. Suppose E is an arbitrary relatively compact subset of a bounded
hyperconvex domain Ω. Then

c∗(E, Ω) =
∫

Ω

(ddcu∗E)n.

If K ⊂ Ω is compact then c(K, Ω) = c∗(K, Ω).

Proof. First we want to show that

(3.1.1) c(K, Ω) =
∫

K

(ddcu∗K)n, K b Ω, K compact.

The inequality “≥” follows directly from the definition of c(K, Ω). To show the converse,
take u ∈ PSH(Ω) with −1 ≤ u ≤ 0 and ε > 0. Since Ω is hyperconvex, there is ψ ∈
PSH(Ω) ∩ C(Ω) with ψ|∂Ω = 0 and ψ|K ≤ −1. By the Choquet lemma we can find a
sequence vj ∈ PSH(Ω) with ψ ≤ vj ≤ 0, vj |K ≤ −1 and vj ↑ v, v∗ = u∗K . Set

uj := max{vj , (1− 2ε)u− ε}.

Then −1 + ε ≤ uj ≤ −ε, uj = (1 − 2ε)u − ε in a neighborhood of K and uj = vj on
{ψ ≥ −ε}. Therefore for ε small enough

(1− 2ε)n

∫

K

(ddcu)n =
∫

K

(ddcuj)n ≤
∫

{ψ≤−ε/2}
(ddcuj)n =

∫

{ψ≤−ε/2}
(ddcvj)n.

By Theorem 2.2.5 (ddcvj)n −→ (ddcu∗K)n weakly. Thus

(1− 2ε)n

∫

K

(ddcu)n ≤ lim
j→∞

∫

{ψ≤−ε/2}
(ddcvj)n ≤

∫

{ψ≤−ε/2}
(ddcu∗K)n =

∫

K

(ddcu∗K)n
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by Proposition 3.1.3.ii and (3.1.1) follows.
Next, observe that we also have

(3.1.2) c(G, Ω) =
∫

Ω

(ddcu∗G)n, G b Ω, G open.

Indeed, let Kj is a sequence of compact sets increasing to G. Then u∗Kj
is decreasing to

some plurisubharmonic v and v ≥ u∗G = uG. If B b G then u∗Kj
= −1 on B for j big

enough, thus v = −1 on G and u∗Kj
↓ u∗G. Now (3.1.1) and Proposition 2.2.1.v implies

(3.1.2).
Let now E b Ω be arbitrary and let G b Ω be an open neighborhood of E. We may

assume that ψ ≤ −1 on G. Then ψ ≤ u∗G ≤ u∗E ≤ 0 and by Corollary 2.2.7 and (3.1.2)

∫

Ω

(ddcu∗E)n ≤
∫

Ω

(ddcu∗G)n = c(G,Ω).

Hence
∫
Ω
(ddcu∗E)n ≤ c∗(E, Ω). Let vj be a sequence as above obtained from the Choquet

lemma with vj ↑ u∗E almost everywhere. If λj ↑ 1 and Gj = {vj < −λj} then Gj are open,
decreasing and λ−1

j vj ≤ uGj
. Therefore u∗Gj

↑ u∗E almost everywhere and Theorem 2.2.5
implies that

lim
j→∞

∫

Ω

(ddcu∗Gj
)n =

∫

Ω

(ddcu∗E)n.

Exercise Let Br = B(0, r) and r < R. Show that

u
Br,BR

(z) = max
{

log |z| − log R

log R− log r
,−1

}

and

c(Br, BR) =
(

2π

log R− log r

)n

.

Corollary 3.1.5. Assume that P b Ω b Cn and that Ω is hyperconvex. Then c∗(P, Ω) = 0
iff there exists u ∈ PSH(Ω) with u ≤ 0 and u = −∞ on P .

Proof. It follows immediately from Theorem 3.1.4 and Proposition 3.1.3.iii.

Proof of Theorem 3.1.1. We can find bounded hyperconvex domains Ωj such that⋃
j Ωj = Cn and uj ∈ PSH(Ωj) with Pj := P ∩ Ωj ⊂ {uj = −∞}. By Corollary 3.1.5

c∗(Pj , Ωj) = 0. Set Bk := B(0, e2k

). Let j(k) be a sequence of positive integers such that
each of them is repeated infinitely many times and Ωj(k) b Bk. By Proposition 2.2.1.iv
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c∗(Pj(k), Bk+2) = 0, hence u∗Pj(k),Bk+2
= 0 and there is vk ∈ PSH(Bk+2) with −1 ≤ vk ≤ 0,

vk = −1 on Pj(k) and
∫

B1
|vk|dλ ≤ 2−k. Set

ṽk(z) :=
{

max{vk(z), 2−k(log |z| − 2k+1)} if z ∈ Bk+2,

2−k(log |z| − 2k+1) if z ∈ Cn \Bk+2.

The expression 2−k(log |z| − 2k+1) is ≥ 0 on Cn \ Bk+1, ≤ 0 on Bk+1 and ≤ −1 on Bk.
Therefore ṽk ∈ PSH(Cn), ṽk ≤ 0 on Bk+1 and ṽk = vk on Bk. Thus u :=

∑∞
k=1 ṽk ∈

PSH(Cn), since
∫

B1
|u|dλ ≤ 1. Moreover, for z big enough we infer

u(z) ≤
∑

2k+1≤log |z|
ṽk(z) ≤

∑

2k+1≤log |z|
2−k(log |z| − 2k+1) ≤ log |z|.

We have ṽk = −1 on Pj(k), thus u = −∞ on P =
⋃

j Pj , since each Pj is repeated infinitely
many times.

Corollary 3.1.6. A countable union of pluripolar sets is pluripolar.

Proof. Let Pj , j = 1, 2, . . . , be pluripolar. Fix a ball B in Cn. By Theorem 3.1.1 we
can find uj ∈ PSH(B) with uj < 0, Pj ∩ B ⊂ {uj = ∞} and

∫
B
|uj |dλ ≤ 2−j . Then

u :=
∑

uj ∈ PSH(Ω) and
⋃

Pj ∩B ⊂ {u = −∞}.

Proof of Theorem 3.1.2. By Corollary 3.1.6 and the Choquet lemma we may assume
that N = {u < u∗} ∩ K̃, where u = supj uj , uj ∈ PSH(Ω), uj ≤ 0, Ω is a bounded
hyperconvex domain and K̃ is a compact subset of Ω. By Theorem 2.2.2 for every ε > 0
there is an open G ⊂ Ω with c(G, Ω) ≤ ε and such that u∗, uj are continuous on Ω \ G.
Therefore u is lower semicontinuous on Ω \ G and for every α and β with α < β ≤ 0 the
set

K = Kαβ = {z ∈ K̃ \G : u(z) ≤ α < β ≤ u∗(z)}
is compact. We claim that c∗(K, Ω) = 0. To prove this we may assume that α = −1. We
have uj ≤ −1 on K, thus uj ≤ uK and u∗ ≤ u∗K , so u∗K ≥ β > −1 on K. From Theorems
2.3.4 and 2.2.10 we infer

c∗(K, Ω) = c(K, Ω) =
∫

K

(ddcu∗K)n ≤
∫

K

(ddc max{u∗K , β})n ≤ |β|nc(K, Ω),

thus c∗(Kαβ , Ω) = 0. Moreover, N ⊂ G ∪ ⋃
α,β∈QKαβ and we can easily construct an

open G̃ with N ⊂ G̃ ⊂ Ω and c(G̃, Ω) ≤ 2ε, so that c∗(N, Ω) = 0 and N is pluripolar by
Corollary 3.1.5.

We can now prove a further property of the relative extremal function:
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Theorem 3.1.7. Assume that Ej ⊂ Ωj , j = 1, 2, . . . , are such that Ej ↑ E, Ωj ↑ Ω and Ω
is bounded. Then u∗Ej ,Ωj

↓ u∗E,Ω.

Proof. We have u∗Ej ,Ωj
↓ u ≥ u∗E,Ω and u ∈ PSH(Ω). The set P =

⋃
j{uEj ,Ωj

< u∗Ej ,Ωj
}

is pluripolar, thus there exists v ∈ PSH(Ω) such that v = −∞ on P and v ≤ 0 (because
Ω is bounded). Since u∗Ej ,Ωj

= −1 on Ej \ P , it follows that u = −1 on E \ P . Therefore
by Proposition 3.1.3.iv, u ≤ u∗E\P,Ω = u∗E,Ω.

Theorem 3.1.8. If Ω is a bounded hyperconvex domain then c∗(·,Ω) is a generalized
capacity on Ω (see A3 for the definition). For every Borel set E ⊂ Ω we have c∗(E) =
c(E) = c∗(E).

Proof. Obviously E1 ⊂ E2 implies c∗(E1) ≤ c∗(E2). If Kj ↓ K and Kj are compact then
by Proposition 3.1.3.v u∗Kj

↑ u∗K almost everywhere and c∗(Kj) ↓ c∗(K) by Theorem 3.1.4.
In the same way, using Theorem 3.1.7, we can prove that if Ej ↑ E then c∗(Ej) ↑ c∗(E)
provided that E is relatively compact. If E is arbitrary, it is no loss of generality to
assume that Ej b Ω for every j. Fix ε > 0. Since c∗({uEj

< u∗Ej
}) = 0, there is an open

G with
⋃

j{uEj
< u∗Ej

} ⊂ G and c(G) ≤ ε. Fix α > −1 and set Uj := {u∗Ej
< α}. Then

u∗Ej
/|α| ≤ uUj

= u∗Uj
and by Corollary 2.2.7

c(Uj) =
∫

Ω

(
ddcu∗Uj

)n

≤ |α|−n

∫

Ω

(
ddcu∗Ej

)n

= |α|−nc∗(Ej).

The set V = G ∪⋃
j Uj is an open neighborhood of E and

c(V ) ≤ ε + lim
j→∞

c(Uj) ≤ ε + |α|−n lim
j→∞

c∗(Ej),

which implies that c∗(E) ≤ limj→∞ c∗(Ej). This shows that c∗ is a generalized capacity.
Now by Theorem A3.1 applied to c∗ and the second part of Theorem 3.1.4 for every

Borel set E ⊂ Ω we have

c∗(E) = inf
K⊂E, K compact

c∗(K) = c∗(E).

The first part of the following proposition is due to Sadullaev [Sad] and the second
one to Bedford and Taylor [BT2].

Proposition 3.1.9. Let Ω be a bounded domain in Cn and E an arbitrary subset of
Ω. Then there is a decreasing sequence of open sets Gj with E ⊂ Gj ⊂ Ω such that
u∗Gj

= uGj
↑ u∗E almost everywhere, as j ↑ ∞. If E ⊂ Ω is Borel then there is an increasing

sequence of compact sets Kj ⊂ E such that u∗Kj
↓ u∗E .
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Proof. By the Choquet lemma there is a sequence uj ∈ PSH(Ω) with uj ≤ 0 and
uj |E ≤ −1 such that uj ↑ u∗E almost everywhere. The sets Gj = {uj < −1 + 1/j} are
open, decreasing and contain E. Since uj − 1/j ≤ uGj

≤ uE , it follows that uGj
↑ u∗E

almost everywhere.
To show the second part define

γ(A) :=
∫

Ω

|u∗A|dλ, A ⊂ Ω.

From Proposition 3.1.3.v and Theorem 3.1.7 it follows that γ is a generalized capacity. If
E is Borel then by Theorem A3.1 we have

γ(E) = sup
K⊂E, K compact

γ(K),

thus there is an increasing sequence of compact sets Kj ⊂ E with γ(Kj) ↑ γ(E). Then, if
F =

⋃
Kj , we have u∗Kj

↓ u∗F ≥ u∗E and u∗F = u∗E almost everywhere, hence everywhere.

Proposition 3.1.10. Assume that E is a subset of a bounded domain Ω in Cn. Then
∫

{u∗
E

>−1}

(ddcu∗E)n = 0.

Proof. Note that∫

{u∗
E

>−1}

(ddcu∗E)n = 0 ⇐⇒
∫

Ω

(ddcu∗E)n =
∫

Ω

−u∗E(ddcu∗E)n

and that (ddcu∗E)n = 0 in Ω \E. If E is compact then it is enough to observe that the set
E ∩ {u∗E > −1} is contained in {uE < u∗E} and thus pluripolar. Next, if E is an Fσ set
and Kj ↑ E are compact then u∗Kj

↓ u∗E and by Theorem 2.1.5
∫

Ω

−u∗E(ddcu∗E)n = lim
j→∞

∫

Ω

−u∗Kj
(ddcu∗Kj

)n = lim
j→∞

∫

Ω

(ddcu∗Kj
)n =

∫

Ω

(ddcu∗E)n.

Finally, let E be arbitrary. Then sets Gj given by Proposition 3.1.9 are open, in particular
Fσ. Now using Theorem 2.2.5 in the same way as in the case of Fσ sets we conclude that

∫

Ω

(ddcu∗E)n =
∫

Ω

−u∗E(ddcu∗E)n.

We finish this section with a product property for the relative extremal function (see
[NS] and [BÃl2]):

Theorem 3.1.11. Let Ωj be bounded pseudoconvex domains in Cnj , j = 1, 2. If Kj ⊂ Ωj

are compact then

(3.1.3) uK1×K2,Ω1×Ω2
= max{uK1,Ω1

, uK2,Ω2
}.
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If Ej ⊂ Ωj are arbitrary then

(3.1.4) u∗E1×E2,Ω1×Ω2
= max{u∗E1,Ω1

, u∗E2,Ω2
},

(3.1.5)
(
ddcu∗E1×E2,Ω1×Ω2

)n1+n2 =
(
ddcu∗E1,Ω1

)n1 ∧ (
ddcu∗E2,Ω2

)n2
,

and, if Ej are relatively compact in Ωj and Ωj are hyperconvex,

(3.1.6) c∗(E1 × E2, Ω1 × Ω2) = c∗(E1,Ω1)c∗(E2, Ω2).

Proof. By Theorems 3.1.7 and 3.1.4 we may assume that Ωj are hyperconvex. First note
that for arbitrary Ej ⊂ Ωj we have the following inequalities

(3.1.5) max{uE1,Ω1
, uE2,Ω2

} ≤ uE1×E2,Ω1×Ω2
≤ −uE1,Ω1

uE2,Ω2
.

The first inequality follows easily from the definition of the relative extremal function. The
second one we can show first on the cross E1 × Ω2 ∪ Ω1 × E2 and then on Ω1 × Ω2 fixing
one of the variables.

If Kj ⊂ Ωj are compact then we can approximate them from above by compacts
Kl

j such that Ωj \Kl
j are regular in the real sense. Thus, by Proposition 3.1.3.v we may

assume that Ωj \Kj are regular and, by Theorem 1.4.3, that uKj ,Ωj
are continuous on Ωj

and uK1×K2,Ω1×Ω2
is continuous on Ω1 × Ω2. Then the inequality “≥” in (3.1.3) follows

immediately. If z1 ∈ K1 then uK1×K2,Ω1×Ω2
(z1, ·) = −1 on K2 and therefore we have

“≤” on Ω1 ×K2 ∪K1 ×Ω2. By Theorem 2.3.5 the right hand-side of (3.1.3) is a maximal
function in (Ω1 \K1)× (Ω2 \K2), which gives (3.1.3). By approximation, we immediately
conclude that (3.1.3) holds also for open subsets of Ωj .

The inequality “≥” in (3.1.4) is clear. For ε > 0 set Uε
j := {u∗Ej ,Ωj

< −1 + ε}. We
see that (1− ε)−1u∗Ej ,Ωj

≤ uUε
j
,Ωj

≤ u∗Ej ,Ωj
, hence uUε

j
,Ωj

↑ u∗Ej ,Ωj
as ε ↓ 0. By (3.1.5) on

Uε
1 ×Uε

2 we have uE1×E2,Ω1×Ω2
≤ −(1−ε)2, so u∗E1×E2,Ω1×Ω2

≤ −(1−ε)2 there. It follows
that on Ω1 × Ω2

(1− ε)2u∗E1×E2,Ω1×Ω2
≤ uUε

1×Uε
2 ,Ω1×Ω2

≤ u∗E1×E2,Ω1×Ω2
.

Therefore,

u∗E1×E2,Ω1×Ω2
(z1, z2) = lim

ε↓0
uUε

1×Uε
2 ,Ω1×Ω2

(z1, z2)

= lim
ε↓0

max{uUε
1 ,Ω1

(z1), uUε
2 ,Ω2

(z2)} ≤ max{u∗E1,Ω1
(z1), u∗E2,Ω2

(z2)},

which shows (3.1.4).
(3.1.5) follows from (3.1.4), Proposition 3.1.10 and Theorem 2.1.11, whereas (3.1.6)

can be deduced from (3.1.5) and Theorem 3.1.4.
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Exercise Show that if Ωj b Cn are hyperconvex and Kj ⊂ Ω are such that ∂Kj ∩Kj are
compact then (3.1.3) holds.

3.2. The global extremal function

We shall consider the following two families of entire plurisubharmonic functions.

L := {u ∈ PSH(Cn) : lim sup
|z|→∞

(u(z)− log |z|) < ∞}

L+ := {u ∈ PSH ∩ L∞loc(Cn) : lim sup
|z|→∞

|u(z)− log |z| | < ∞}.

Note that Theorem 3.1.1 meant precisely that P ⊂ Cn is pluripolar iff P ⊂ {u = −∞} for
some u ∈ L.

Proposition 3.2.1. i) If u ∈ L then

(3.2.1) u(z) ≤ max
B(z0,r)

u + log
|z − z0|

r
if |z − z0| ≥ r;

ii) If {uα} is a family of functions from L and u = supα uα then either u∗ ∈ L or
u∗ ≡ +∞;

iii) Let B = B(0, 1) be the unit ball in Cn. There exists cn > 0 such that for every
u ∈ L we have

max
B

u ≤ 1
σ(∂B)

∫

∂B

u dσ + cn.

Proof. i) By v denote the right hand-side of (3.2.1). For every α < 1 we have αu ≤ v on
∂B(z0, R) for R big enough. Since the same inequality holds on ∂B(z0, r), (3.2.1) follows
from the maximality of v in Cn \ {0}.

ii) Assume that u∗(z0) < +∞ for some z0. Then there is r > 0 such that M =
maxB(z0,r) u < +∞. By i) for every α and |z− z0| ≥ r we have uα(z) ≤ M +log |z− z0|/r,
hence u∗ ∈ L.

iii) We may assume that max
B

u = 0. From i) it easily follows that max
B(0,r)

u ≥ log r, if

0 < r < 1. From the fact that u is in particular subharmonic we deduce that for z ∈ B(0, r)

u(z) ≤ 1
σ(∂B)

∫

∂B

1− |z|2
|z − w|2n

u(w)dσ(w) ≤ 1− r

(1 + r)2n−1

1
σ(∂B)

∫

∂B

u dσ.

Therefore, if 0 < r < 1,

1
σ(∂B)

∫

∂B

u dσ ≥ log r
(1 + r)2n−1

1− r
.
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Proposition 3.2.2. i) If u ∈ L ∩ L∞loc then
∫
Cn(ddcu)n ≤ (2π)n.

ii) If u ∈ L+ then
∫
Cn(ddcu)n = (2π)n.

Proof. Since ii) holds in the particular case of the function log+ |z| ∈ L+, it is enough to
show that if u ∈ L ∩ L∞loc and v ∈ L+ then

∫
Cn(ddcu)n ≤ ∫

Cn(ddcv)n. Take K b Cn. By
adding positive constants if necessary, we may assume that 0 ≤ 2v ≤ u on K. For every
α, 1 < α < 2, there is R big enough such that u ≤ αv in a neighborhood of ∂B(0, R). By
Theorem 2.2.6 we have therefore

∫

K

(ddcu)n ≤
∫

{αv<u}

(ddcu)n ≤ αn

∫

{αv<u}

(ddcv)n ≤ αn

∫

Cn

(ddcv)n

and the proposition follows.

Let E be a bounded subset of Cn. The global extremal function of E is defined by

VE := sup{u ∈ L : u|E ≤ 0}.

(Sometimes VE is called the Siciak extremal function.)

Exercise Show that VB(z0,r)(z) = V
B(z0,r)

(z) = log+ |z − z0|
r

.

Here are the basic properties of VE .

Theorem 3.2.3. i) If E1 ⊂ E2 then VE1
≥ VE2

;
ii) P is pluripolar iff V ∗

P ≡ +∞;
iii) If E is not pluripolar then V ∗

E ∈ L+;
iv) If E is not pluripolar then V ∗

E is maximal in Cn \ E;
v) V ∗

E∪P = V ∗
E if P is pluripolar;

vi) If Kj ↓ K and Kj are compact then VKj
↑ VK ;

vii) If Ej ↑ E then V ∗
Ej
↓ V ∗

E ;

viii) If K is compact then the supremum in the definition of VK can be taken only
over smooth functions. In particular, VK is lower semicontinuous.

Proof. i) is obvious.
ii) If P is pluripolar then there is u ∈ L with P ⊂ {u = −∞}. For every M > 0

we have u + M ≤ VP , hence VP = +∞ on {u > −∞}, so V ∗
P ≡ +∞. Now assume

that V ∗
P ≡ +∞ and let B be the unit ball. For every j = 1, 2, . . . there is uj ∈ L with

uj |P ≤ 0 and Mj = maxB uj ≥ 2j . Set u :=
∞∑

j=1

2−j(uj − Mj). By Proposition 3.2.1.i
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uj(z) ≤ Mj + log+ |z|, thus u(z) ≤ log+ |z|. From Proposition 3.2.1.iii it follows that

1
σ(∂B)

∫

∂B

u dσ =
∞∑

j=1

2−j 1
σ(∂B)

∫

∂B

(uj −Mj) dσ ≥ −cn.

Thus u is not identically −∞ and u ∈ L, since for every R > 1 we may write u =
∞∑

j=1

2−j(uj − log R−Mj) + log R. On P we have u ≤ −
∑

j

2−jMj = −∞.

iii) From ii) and Proposition 3.2.1.ii it follows that V ∗
P ∈ L. Since E is contained in

some ball, we conclude that V ∗
P ∈ L+.

Proofs of iv)-vii) are now similar to the proofs of corresponding properties of the
relative extremal function in section 3.1.

iv) By iii) V ∗
E is locally bounded. By the Choquet lemma there is a sequence uj ∈ L,

uj |E ≤ 0, increasing to V ∗
E almost everywhere. If B b Cn \E is a ball then we can replace

uj by ûj given by Proposition 1.4.10, thus V ∗
E is maximal in B by Theorem 2.3.4.

v) We have to show that v ≤ V ∗
E∪P for every v ∈ L with v|E ≤ 0. We can find

u ∈ L such that P ⊂ {u = −∞} and u|E ≤ 0. For every ε > 0 we have therefore
(1− ε)v + εu ≤ VE∪P , hence v ≤ VE∪P on {u > −∞} and v ≤ V ∗

E∪P everywhere.
vi) We have VKj

↑ w ≤ VK . Take v ∈ L with v|K ≤ 0. For every ε > 0 the set {v < ε}
is an open neighborhood of K and so there is j such that v|Kj ≤ ε. Thus v− ε ≤ VKj

≤ w
and VK ≤ w.

vii) We have V ∗
Ej
↓ u ≥ V ∗

E . We may assume that E is not pluripolar, hence u ∈ L and
the set P =

⋃
j{VEj

< V ∗
Ej
} is pluripolar. Then u = 0 on E\P and u ≤ VE\P ≤ V ∗

E\P = V ∗
E

by v).
viii) Take u ∈ L with u|K = 0. Then for ε > 0 uε = u ∗ ρε ∈ L∩C∞ and maxK uε ↓ 0

as ε ↓ 0. Thus for every δ > 0 there is ε > 0 such that u− δ ≤ uε − δ ≤ VK .

The next result, due essentially to Zahariuta [Zah], shows that for K compact VK can
be defined by means of polynomials in Cn and that was in fact the original definition of
Siciak [Sic1].

Theorem 3.2.4. Assume that K ⊂ Cn is compact. Then

VK = sup
{

1
d

log |P | : P ∈ C[z1, . . . , zn], d ≥ degP, |P | ≤ 1 on K

}
.

Theorem 3.2.4 will easily follow from the following approximation property of functions
from L proved Siciak [Sic4] (see also [Sic3]).

Theroem 3.2.5. For every u ∈ L there is a sequence

uj = max
1≤k≤kj

1
djk

log |Pjk|
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decreasing to u, where Pjk, j = 1, 2, . . . , 1 ≤ k ≤ kj , are polynomials in Cn and djk ≥
degPjk.

Proof. For ζ ∈ C, ζ 6= 0, set h(z, ζ) := u(z/ζ) + log |ζ|. Then h is plurisubharmonic
in Cn+1 \ {ζ = 0} and it is locally bounded near the hyperplane {ζ = 0}, since u ∈ L.
For ε > 0 the function hε = h + ε log |ζ| is therefore plurisubharmonic in Cn+1 and in
{|ζ| < 1} we have h∗ = (supε hε)

∗, hence h can extended to a plurisubharmonic function
in the entire Cn+1.

The domain Ω := {h < 0} is a balanced pseudoconvex domain in Cn+1, hence Ω
is convex with respect to the homogeneous polynomials by Theorem 1.4.8. Therefore
there exists a sequence Kj of compact subsets of Ω with Kj = K̂H

j , Kj ⊂ intKj+1 and
Kj ↑ Ω. We claim that for every j there are homogeneous polynomials Qj1, . . . , Qjkj

such
that Kj ⊂

⋂

1≤k≤kj

{|Qjk| ≤ 1} ⊂ intKj+1. Indeed, for every a ∈ ∂Kj+1 there exists a

homogeneous polynomial Qa with |Qa(a)| > ||Qa||Kj = 1. We can choose a finite number
of points a1, . . . , akj with ∂Kj+1 ⊂

⋃
k{|Qak

| > 1}, thus we may take Qjk = Qak
.

Now set djk := degQjk and fj := maxk |Qjk|1/djk . Then fj is homogeneous of degree
1, Kj ⊂ {fj ≤ 1} ⊂ intKj+1, hence fj is increasing to the Minkowski functional of Ω, that
is to eh. It follows that the polynomials Pjk(z) := Qjk(z, 1) satisfy the hypothesis of the
theorem.

Proof of Theorem 3.2.4. The inequality “≥” is clear. To show the converse take u ∈ L
with u|K = 0 and let uj be a sequence given by Theorem 3.2.5. Then maxK uj ↓ 0 as
j ↑ ∞, hence for every δ > 0 there is j such that uj−δ ≤ u ≤ VK and the theorem follows.

For a different proof of Theorem 3.2.4 making use of the Hörmander L2-estimates see
[Dem3].

Exercise Assume that K is compact. Show that the polynomial hull of K is given by

K̂ = {VK ≤ 0} and V
K̂

= VK .

A compact subset K of Cn is called L-regular if V ∗
K = 0 on K. If K is L-regular

then V ∗
K ≤ VK , hence VK is upper semicontinuous and thus continuous in Cn by Theorem

3.2.3.viii. It is also easy to see that if Cn \K is regular (in the real sense) then K is L-
regular. Therefore, every compact set in Cn can be approximated from above by L-regular
sets.

Exercise Show that the cube [−1, 1]n is an L-regular subset of Cn but it is not regular as
a subset of R2n for n ≥ 2.
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If E is a bounded subset of Cn then µE := (ddcV ∗
E)n is called the equlibrium measure

of E. It is supported on ∂E and, by Proposition 3.2.2.ii, its total mass is equal to (2π)n.
We have the following analogues of Propositions 3.1.9, 3.1.10 and Theorem 3.1.11 for

the global extremal function:

Proposition 3.2.6. For every bounded subset E of Cn there is a decreasing sequence
of bounded open sets Gj containing E such that V ∗

Gj
= VGj

↑ V ∗
E almost everywhere. If

E is Borel then one can find an increasing sequence of compact sets Kj ⊂ Ej such that
V ∗

Kj
=↓ V ∗

E .

Proof. We proceed in the same way as in the proof of Proposition 3.1.9. As a suitable
generalized capacity we may take

γ(A) :=
∫

B(0,R)

(V ∗
A + 1)−1dλ, A ⊂ B(0, R),

where R is big enough.

Proposition 3.2.7. If E is a bounded subset of Cn then

∫

{V ∗
E

>0}

(ddcV ∗
E)n = 0.

Theorem 3.2.8. If Kj are compact in Cnj , j = 1, 2, then

(3.2.2) VK1×K2
= max{VK1

, VK2
}.

If Ej are arbitrary bounded subsets of Cnj then

(3.2.3) V ∗
E1×E2

= max{V ∗
E1

, V ∗
E2
}

and

(3.2.4) µE1×E2
= µE1

µE2
.

Proof. It is almost the same as the proof of Theorem 3.1.11. It is left as an Exercise to
the reader to show that (3.2.2) implies (3.2.3) and (3.2.4). To prove (3.2.2) we may assume
that Kj are L-regular. Set v = max{VK1 , VK2}. Then VK1×K2 ≤ v on Cn1×K2∪K1×Cn2

and, since v ∈ L+, for every a > 1 we have VK1×K2(z) ≤ av(z) if |z| big enough. By
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Theorem 2.1.10, v is maximal in (Cn1 \K1)× (Cn2 \K2), hence VK1×K2 ≤ av everywhere
and the theorem follows.

The next result is a comparison of the relative and global extremal functions (see [Kli2,
Proposition 5.3.3]) and their Monge-Ampère measures (this part is due to Levenberg [Lev]
in case of compact sets, with a much more complicated proof though).

Theorem 3.2.9. Let Ω be a bounded hyperconvex domain in Cn and E a non-pluripolar,

relatively compact subset of Ω such that Ê ⊂ Ω. Then 0 < inf
∂Ω

V
E
≤ sup

∂Ω
VE < +∞ and on

Ω we have

(3.2.5) inf
∂Ω

V
E

(uE,Ω + 1) ≤ VE ≤ sup
∂Ω

VE(uE,Ω + 1)

and

(3.2.6) (inf
∂Ω

V
E

)n(ddcu∗E,Ω)n ≤ (ddcV ∗
E)n ≤ (sup

∂Ω
VE)n(ddcu∗E,Ω)n.

Proof. The first statement is clear, since V
E

> 0 on Cn \ Ê ⊃ ∂Ω, V
E

is lower semicon-
tinuous and V ∗

E ∈ L. If u ∈ L is such that u|E ≤ 0 then u/ sup
∂Ω

VE − 1 ≤ uE which implies

the second inequality in (3.2.5).
Take v ∈ PSH(Ω) with v ≤ 0, v|E ≤ −1 and let 0 < ε < m := inf

∂Ω
V

E
. If Kj is a

sequence of L-regular sets decreasing to E, from the lower semicontinuity of VKj
it follows

that inf
∂Ω

VKj
↑ m. It we set u := VKj

for j big enough, then u ∈ L ∩ C, u|E ≤ 0 and

u|∂Ω ≥ m− ε. Therefore the function

w :=
{

max{(m− ε)(v + 1), u} on Ω,

u on Cn \ Ω

belongs to L and w|E ≤ 0. Hence (m− ε)(v + 1) ≤ VE on Ω and (3.2.5) follows.
To show (3.2.6) observe that if u1, u2 ∈ PSH ∩ L∞loc and u1 ≥ u2 then by Theorem

2.2.10 on {u1 = u2} we have (ddcu1)n = (ddc max{u1, u2})n ≥ (ddcu2)n. By Propositions
3.1.11 and 3.2.7, (ddcu∗E)n = (ddcV ∗

E)n = 0 outside the set {V ∗
E = u∗E + 1 = 0} and (3.2.6)

follows directly from (3.2.5).

Exercise Assume that E is a bounded subset of Cn and let R be so big that E is contained
in a connected component Ω of the open set {V ∗

E < R}. Show that

VE ≤ R(uE,Ω + 1) ≤ R(u∗E,Ω + 1) = V ∗
E .
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3.3. The pluricomplex Green function

Let Ω be a domain in Cn and w ∈ Ω. The pluricomplex Green function of Ω with a
pole at w was first defined in [Kli1] as follows

gΩ,w = gΩ(w, ·) := sup{u ∈ PSH(Ω) : u ≤ 0, lim sup
z→w

(u(z)− log |z − w|) < ∞}.

Exercise Show that gB(w,r)(w, z) = log |z−w|
r .

The next proposition lists the basic properties of gΩ and the proofs are left as an
Exercise to the reader.

Proposition 3.3.1. i) If Ω1 ⊂ Ω2 then gΩ1
≥ gΩ2

on Ω1 × Ω1;

ii) If B(w, r) ⊂ Ω then gΩ(w, z) ≤ log |z−w|
r , z ∈ Ω;

iii) If Ω ⊂ B(w,R) then log |z−w|
R ≤ gΩ(w, z), z ∈ Ω;

iv) Either gΩ,w ≡ −∞ or gΩ,w ∈ PSH(Ω); in the latter case gΩ,w is maximal in
Ω \ {w};

v) If Ωj ↑ Ω then gΩj
↓ gΩ.

The following result can be used in constructing explicit examples of the Green func-
tion with a pole at the origin.

Proposition 3.3.2. Let Ω be a balanced pseudoconvex domain in Cn. Then gΩ,0 = log fΩ,
where fΩ is the Minkowski functional of Ω.

Proof. From Theorem 1.4.8 it follows that log fΩ is psh in Ω. From the definition of
the Minkowski functional one can deduce that if B(0, r) ⊂ Ω then fΩ(z) ≤ |z|/r, hence
log fΩ ≤ gΩ,0. On the other hand, if we fix z0 ∈ ∂B(0, 1), then {λ ∈ C : λz0 ∈ Ω} =
∆(0, ρ) for some ρ ∈ (0,+∞] and log fΩ(λz0) = log |λ|/r = g∆(0,r)(0, λ) and it follows that
gΩ,0 ≤ log fΩ.

The following comparison of the Green function with the relative extremal function
of a ball will turn out handy.

Proposition 3.3.3. Assume that r,R > 0 are such that B(w, r) b Ω ⊂ B(w, R). Then
for ρ ∈ (0, r] we have

(3.3.1) log
R

ρ
u

B(w,ρ),Ω
(z) ≤ gΩ(w, z) ≤ log

r

ρ
u

B(w,ρ),Ω
(z), z ∈ Ω \B(w, ρ).
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Proof. If z ∈ ∂B(w, ρ) then (3.3.1) follows from Proposition 3.3.1.ii,iii. The second
inequality in (3.3.1) can be then deduced from Proposition 3.3.1.iv and the definition of
the relative function. On the other hand, the function

v(z) :=

{
max{log |z−w|

R , log R
ρ u

B(w,ρ),Ω
(z)}, if z ∈ Ω \B(w, ρ)

log |z−w|
R , if z ∈ B(w, ρ)

is plurisubharmonic and v ≤ gΩ,w which gives the first inequality in (3.3.1).

Exercise Let Ω be a bounded balanced domain in Cn. Prove that Ω is hyperconvex iff
log fΩ is plurisubharmonic and continuous in Cn \ {0}.

The next two results are due to Demailly [Dem1].

Theorem 3.3.4. Assume that Ω is bounded and hyperconvex. Then egΩ is continuous on
Ω× Ω (on Ω× ∂Ω we set gΩ := 0).

Proof. The continuity at the points from the diagonal of Ω × Ω follows directly from
Proposition 3.3.1.ii. It therefore remains to show the continuity of gΩ on Ω′ × (Ω \Ω′′), if
Ω′ b Ω′′ b Ω. Let r,R > 0 be such that B(w, r) b Ω′′ b Ω ⊂ B(w, R) for every w ∈ Ω′.
For ρ ∈ (0, r) set

uρ(w, z) := u
B(w,ρ),Ω

(z), w ∈ Ω′, z ∈ Ω.

By Proposition 3.3.3 on Ω′ × (Ω \ Ω′′) we have

log
R

ρ
uρ ≤ gΩ ≤ log

r

ρ
uρ,

and, since log R
ρ / log r

ρ ↓ 1 as ρ ↓ 0, it remains to show that for a fixed ρ the function uρ

is continuous on Ω′ ×Ω. Observe that, since Ω is hyperconvex, for a fixed w, the function
uρ(w, ·) is continuous on Ω by Proposition 3.1.3.vii. Therefore, it is enough to show that,
if wj −→ w then uρ(wj , ·) −→ uρ(w, ·) uniformly in Ω. Fix small ε > 0. Then for j big
enough we have B(wj , ρ− ε) ⊂ B(w, ρ) ⊂ B(wj , ρ + ε) and

u
B(wj ,ρ)

−
log ρ+ε

ρ

log r
ρ

≤ u
B(wj ,ρ+ε)

≤ u
B(w,ρ)

≤ u
B(wj ,ρ−ε)

≤ u
B(wj ,ρ)

+
log ρ

ρ−ε

log r
ρ−ε

on Ω. This completes the proof of the theorem.

Theorem 3.3.5. Let w ∈ Ω, where Ω is a bounded domain in Cn. Assume that uj is a
sequence of locally bounded plurisubharmonic functions defined in a neighborhood U of
w, U ⊂ Ω, decreasing to gΩ,w. Then (ddcuj)n tends weakly to (2π)nδw.
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Proof. Let r,R and ρ be as in Proposition 3.3.3 with B(w, r) b U . For simplicity we may
assume that w = 0 and denote g = gΩ,w, Bρ = B(w, ρ). In view of Proposition 3.3.1.iv it
is enough to show that

(3.3.2) lim
j→∞

∫

Bρ

(ddcuj)n = (2π)n.

The idea will be similar as in the proof of Proposition 3.2.2. We have log |z|
R ≤ g(z) ≤

log |z|
r , z ∈ Br. Fix α < 1 and let C > 0 be such that α log ρ − C < log ρ

R . We can find
ε > 0 so small that α log ε − C > log ε

r . Then, since maxBε
uj ↓ maxBε

g as j ↑ ∞, for
j big enough we have Bε b {uj < f} b Bρ, where f(z) = max{α log |z| − C, log ε

r}. By
Theorem 2.2.6 we have

∫

Bρ

(ddcuj)n ≥
∫

{uj<f}
(ddcuj)n ≥

∫

{uj<f}
(ddcf)n =

∫

Bε

(ddcf)n = αn(2π)n.

On the other hand, fix β > 1. Then uj(z) ≥ log |z|
R ≥ β log |z|

r for z ∈ Bδ, where δ > 0
depends on β, thus

∫

Bδ

(ddcuj)n ≤
∫

Br

(
ddc max{uj , β log

|z|
r
}
)n

= βn(2π)n.

Now, since (ddcuj)n −→ 0 on U \ {0}, we have

lim
j→∞

∫

Bρ\Bδ

(ddcuj)n = 0

and (3.3.2) follows.

Exercise Prove that gΩ is symmetric if n = 1.

Exercise Let Ω = {(z1, z2) ∈ C2 : |z1z2| < 1}. Show that for w = (w1, w2) ∈ Ω one has

gΩ((w1, w2), (z1, z2)) =





log
∣∣∣∣

z1z2 − w1w2

1− w1w2z1z2

∣∣∣∣ if (w1, w2) 6= (0, 0),

1
2 log |z1z2| if (w1, w2) = (0, 0).

In particular, gΩ is not symmetric.

In view of Propositon 3.3.1.v it means in particular that if n ≥ 2 then gΩ need not
be symmetric even if Ω is a very regular, bounded hyperconvex domain. A domain with
non-symmetric Green function was constructed for the first time by Bedford and Demailly
[BD] and the above simple example is due to Klimek.
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The product property for the Green function was first proved in [JP1]:

Theorem 3.3.6. Let Ωj be bounded hyperconvex domains in Cnj , j = 1, 2. Then for
wj ∈ Ωj we have

gΩ1×Ω2,(w1,w2) = max{gΩ1,w1 , gΩ2,w2}.

Proof. We may assume that wj = 0. The inequality “≥” follows directly from the defini-
tion of the Green function. Theorem 2.1.10 implies that the function u := max{gΩ1,0, gΩ2,0}
is maximal in (Ω1 \ {0}) × (Ω2 \ {0}) and it easily follows that it is in fact maximal in
Ω1×Ω2\{(0, 0)}. For every α > 1 there exists ε > 0 such that αgΩ1×Ω2

≤ u on B((0, 0), ε).
Since Ωj are hyperconvex, we have u = 0 on ∂(Ω1 × Ω2) and from the maximality of u it
follows that αgΩ1×Ω2

≤ u in Ω1 × Ω2 \B((0, 0), δ) for every δ ∈ (0, ε).

We finish this section with a result describing the behavior of a Green function in
hyperconvex domains when a pole approaches the boundary:

Theorem 3.3.7. Let Ω be a bounded hyperconvex domain. Then for p < ∞ we have

lim
w→∂Ω

||gΩ,w||Lp(Ω) = 0.

Proof. By Proposition 3.3.1.iii we have

(3.3.3) ||gΩ,w||Lp(Ω) ≤ C(p,Ω).

In particular, it is enough to show that for Ω′ b Ω

lim
w→∂Ω

||gΩ,w||Lp(Ω′) = 0.

By Theorem 1.4.6 there exists ψ ∈ PSH(Ω) ∩ C(Ω) with ψ|∂Ω = 0 and (ddcψ)n ≥ dλ on
Ω′. Then, using Theorems 2.1.8 and 3.3.5

||gΩ,w||nLn(Ω′) ≤
∫

Ω

(−gΩ,w)n(ddcψ)n

= lim
k→∞

∫

Ω

(−max{gΩ,w,−k})n(ddcψ)n

≤ n!||ψ||n−1
L∞(Ω) lim

k→∞

∫

Ω

|ψ|(ddc max{gΩ,w,−k})n

= n!(2π)n||ψ||n−1|ψ(w)|.
This proves the theorem for p = n. Now, the general case follows easily from the Hölder
inequality and (3.3.3).
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IV. Some applications of pluripotential theory

4.1. The Bergman metric

Throughout this section let Ω be a bounded domain in Cn. By H2(Ω) we denote the
set of holomorphic functions in Ω that are in L2(Ω). If f is holomorphic in Ω then in
particular |f |2 is a subharmonic function and we have

|f(z)|2 ≤ 1
λ(B(z, r))

∫

B(z,r)

|f |2dλ, 0 < r < dist (z, ∂Ω).

Therefore

(4.1.1) |f(z)| ≤ cn

(dist (z, ∂Ω))n
||f ||, z ∈ Ω, f ∈ H2(Ω),

where by ||f || we denote the norm of f in L2(Ω). It follows that

sup
K
|f | ≤ c(K, Ω) ||f ||, K b Ω, f ∈ H2(Ω).

From this one can easily deduce that H2(Ω) is a closed subspace of L2(Ω), and thus a
separable Hilbert space with a scalar product

〈f, g〉 =
∫

Ω

fgdλ, f, g ∈ H2(Ω).

For a fixed z ∈ Ω we have a functional

H2(Ω) 3 f 7−→ f(z) ∈ C

which is continuous by (4.1.1). It follows that there is gz ∈ H2(Ω) such that f(z) = 〈f, gz〉
for every f ∈ H2(Ω). For ζ, z ∈ Ω we set KΩ(ζ, z) = gz(ζ), so that

f(z) = 〈f, KΩ(·, z)〉, z ∈ Ω, f ∈ H2(Ω).

In particular,

KΩ(z, w) = 〈KΩ(·, w),KΩ(·, z)〉 = KΩ(w, z), z, w ∈ Ω.
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We conclude that for z, w ∈ Ω KΩ(·, w) is holomorphic and KΩ(z, ·) antiholomorphic in
Ω. Hence, KΩ(z, ·̄) is holomorphic in a domain Ω∗ := {w : w ∈ Ω}. From the Hartogs
theorem on separate analyticity it follows that KΩ(·, ·̄) is holomorphic in Ω × Ω∗ and so
KΩ ∈ C∞(Ω× Ω). KΩ is called a Bergman kernel of Ω.

We set kΩ(z) := KΩ(z, z). Then, by the definition of KΩ, we have

(4.1.2) kΩ(z) = ||KΩ(·, z)||2 = sup{|f(z)|2 : f ∈ H2(Ω), ||f || ≤ 1}.

Proposition 4.1.1. i) If Ω1 ⊂ Ω2 then kΩ1 ≥ kΩ2 ;
ii) If Ωj ↑ Ω then KΩj

→ KΩ locally uniformly on Ω× Ω, thus kΩj
↓ kΩ.

Proof. i) It follows easily from (4.1.2).
ii) Choose domains Ω′ and Ω′′ so that Ω′ b Ω′′ b Ω. Then for z, w ∈ Ω′ and j big

enough by the Schwarz inequality and i) we have

|KΩj (z, w)|2 ≤ kΩj (z)kΩj (w) ≤ kΩ′′(z)kΩ′′(w).

Therefore the sequence KΩj is locally bounded in Ω×Ω. If we apply the Montel theorem
to the space of holomorphic functions in Ω × Ω∗, we see that KΩj has a subsequence
converging locally uniformly on Ω× Ω. Thus, to complete the proof, it is enough to show
that if KΩj → K locally uniformly, then K = KΩ.

For w ∈ Ω we have

||K(·, w)||2L2(Ω′) = lim
j→∞

||KΩj (·, w)||2L2(Ω′)

≤ lim inf
j→∞

||KΩj (·, w)||2L2(Ωj)
= lim inf

k→∞
KΩj = K(w, w).

Since the estimate holds for arbitrary Ω′ b Ω, we get

||K(·, w)||2L2(Ω) ≤ K(w, w)

and so K(·, w) ∈ H2(Ω) for every w ∈ Ω. Fix w ∈ Ω and f ∈ H2(Ω). To finish the proof
it remains to show that

f(w) =
∫

Ω

f(z)K(z, w)dλ(z).

For j big enough we have

f(w) =
∫

Ωj

f(z)KΩj (z, w)dλ(z)

and thus

f(w)−
∫

Ω

f(z)K(z, w)dλ(z) =
∫

Ω′
f(z)

(
KΩj (z, w)−K(z, w)

)
dλ(z)

+
∫

Ωj\Ω′
f(z)KΩj (z, w)dλ(z)−

∫

Ω\Ω′
f(z)K(z, w)dλ(z).
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The absolute value of the second integral we may estimate by ||f ||L2(Ω\Ω′)
√

KΩj
(w, w),

and it follows easily that all three integrals are arbitrarily small if Ω′ is sufficiently close
to Ω and j is big enough.

Let φ0, φ1, . . . be an orthonormal basis of H2(Ω). Then

f =
∑

k

〈f, φk〉φk, f ∈ H2(Ω),

and by (4.1.2) the convergence is locally uniform. Thus

(4.1.3) KΩ(z, w) =
∑

k

〈φk,KΩ(·, w)〉φk(z) =
∑

k

φk(z)φk(w), z, w ∈ Ω,

and

(4.1.4) kΩ =
∑

k

|φk|2.

Since KΩ is smooth, from (4.1.2) it follows that log kΩ ∈ PSH∩C∞(Ω). The Bergman
metric of Ω is defined as the Levi form of log kΩ:

β2(z,X) :=
∂2

∂λ∂λ
log kΩ(z + λX)

∣∣∣∣
λ=0

=
n∑

j,k=1

∂2(log kΩ)
∂zj∂zk

(z)XjXk, z ∈ Ω, X ∈ Cn.

It can be expressed in the following way:

Theorem 4.1.2. For z ∈ Ω and X ∈ Cn we have

β2(z, X) =
1

kΩ(z)
sup

{|DXf(z)|2 : f ∈ H2(Ω), ||f || ≤ 1, f(z) = 0
}

,

where DXf :=
∑n

j=1 ∂f/∂zj Xj .

Proof. We may assume that X 6= 0. Define the following subspaces of H2(Ω):

H ′ := {f ∈ H2(Ω) : f(z) = 0},
H ′′ := {f ∈ H ′ : DXf(z) = 0} .

Then H ′′ ⊂ H ′ ⊂ H2(Ω) and in both cases the codimension equals 1, since H ′ and H ′′

are defined as kernels of nonzero functionals (〈· − z, X〉 ∈ H ′′ \H ′). Let φ0, φ1, . . . be an
orthonormal basis of H2(Ω) such that φ1 ∈ H ′ and φk ∈ H ′′ for k ≥ 2. Then using (4.1.4)
we may easily compute that

kΩ(z) = |φ0(z)|2, β2(z,X) =
|DXφ1(z)|2
|φ0(z)|2 .
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This gives “≤”. To get the inverse inequality take any f ∈ H ′ with ||f || ≤ 1. Then
〈f, φ0〉 = 0 and

f =
∞∑

k=1

〈f, φk〉φk.

Therefore
|DXf(z)| = |〈f, φ1〉DXφ1(z)| ≤ |DXφ1(z)|

and the theorem follows.

We see therefore that log kΩ is strictly plurisubharmonic and thus the Bergman metric
is indeed a metric (even a Kähler one). Namely, if γ : [0, 1] → Ω is a continuous and
piecewise smooth curve, then its length is defined by

l(γ) =
∫ 1

0

β(γ(t), γ′(t))dt

and the Bergman distance dist Ω(z, w) between two points z, w ∈ Ω is the infiumum over
the lengths of all such curves joining z and w. If Ω with this distance is complete then we
say that it is Bergman complete. The next result is due to Bremermann [Bre].

Proposition 4.1.3. If Ω is Bergman complete then it must be pseudoconvex.

Proof. If Ω is not pseudoconvex then by the definition of a domain of holomorhpy there
are domains Ω1,Ω2 such that ∅ 6= Ω1 ⊂ Ω ∩ Ω2 and for every f holomorphic in Ω there
exists f̃ holomorphic in Ω2 such that f = f̃ on Ω1. We may assume that Ω1 is a connected
component of Ω ∩ Ω2 such that the set Ω2 ∩ ∂Ω ∩ ∂Ω1 is nonempty. Since KΩ(·, ·̄) is
holomorphic in Ω × Ω∗, it follows that there exists K̃ ∈ C∞(Ω2 × Ω2) such that K̃(·, ·̄)
is holomorphic in Ω2 × Ω∗2 and K̃ = KΩ in Ω1 × Ω1. This means that every sequence
zk → Ω2 ∩ ∂Ω ∩ ∂Ω1 is a Cauchy sequence with respect to dist Ω, which contradicts the
completeness of Ω.

The converse is not true and perhaps the simplest example of a pseudoconvex but not
Bergman complete domain is a punctured disc on the plane.

Our next goal is to show the following criterion due to Kobayashi ([Kob1], [Kob2], see
also [Kob3]).

Theorem 4.1.4. Let Ω be a bounded domain satisfying

lim
z→∂Ω

|f(z)|2
kΩ(z)

< ||f ||2, f ∈ H2(Ω) \ {0}.

Then Ω is Bergman complete.
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Before proving Theorem 4.1.4 we want to look at a general construction of Kobayashi.
Define a mapping

ι : Ω 3 z 7−→ 〈KΩ(·, z)〉 ∈ P(H2(Ω)).

One can easily check that ι is one-to-one. In the projective space P(H2(Ω)) we have
the Fubini-Study metric F (see Section A4). The following fact was first observed by
Kobayashi [Kob1]:

Proposition 4.1.5. One has β2 = ι∗F2, that is

β2(z,X) = F2(ι(z), ι′(z).X), z ∈ Ω, X ∈ Cn.

Proof. Let γ : (−ε, ε) → Ω be a smooth curve with γ(0) = z, γ′(0) = X. Set γ̃(t) =
KΩ(·, γ(t)). We have to show that

(4.1.5) β2(z,X) =
||γ̃(0)||2||γ̃′(0)||2 − |〈γ̃(0), γ̃′(0)〉|2

||γ̃(0)||4 .

Let φ0, φ1, . . . be an orthonormal basis of H2(Ω) chosen in the same way as in the proof
of Theorem 4.1.2. Then

γ̃(0) = φ0(z)φ0,

γ̃′(0) = DXφ0(z)φ0 + DXφ1(z)φ1

and one can easily check that both hand-sides of (4.1.5) are equal to

|DXφ1(z)|2
|φ0(z)|2 .

Thus ι is an imbedding of (Ω, β2) into the space (P(H2(Ω)),F2). It is therefore dis-
tance decreasing and combining this with Proposition A4.2 we have obtained the following
estimate:

Proposition 4.1.6. For z, w ∈ Ω we have

dist Ω(z, w) ≥ arccos
|KΩ(z, w)|√
kΩ(z)kΩ(w)

.

Proof of Theorem 4.1.4. Let zk be a Cauchy sequence in Ω (with respect to the Bergman
metric). Suppose that zk has no accumulation point in Ω. It is easy to check that this is
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equivalent to the fact that zk → ∂Ω. Since ι(zk) is a Cauchy sequence in P(H2(Ω)) which
is complete, it follows that there is f ∈ H2(Ω) \ {0} such that ι(zk) → 〈f〉. Therefore

|f(zk)|
kΩ(zk)

=
∣∣〈f,

KΩ(·, zk)√
kΩ(zk)

〉∣∣ → ||f ||

as k →∞, which contradicts the assumption of the theorem.

By the way, Proposition A4.3 gives the following lemma due to Pflug [Pfl]:

Lemma 4.1.7. Assume that Ω is bounded and let zk be a Cauchy sequence in Ω with
respect to the Bergman metric such that zk → ∂Ω. Then one can find f ∈ H2(Ω), ||f || = 1,
and λk ∈ C, |λk| = 1, such that

λk
KΩ(·, zk)√

kΩ(zk)
→ f

in H2(Ω) as k →∞.

Theorem 4.1.4 also easily implies the following:

Corollary 4.1.8. Let Ω be a bounded domain in Cn such that lim
z→∂Ω

kΩ(z) = ∞ and for

every z0 ∈ ∂Ω the space

{f ∈ H2(Ω) : lim
z→z0

|f(z)| < ∞}

is dense in H2(Ω) (this is for example the case if H∞(Ω) is dense in H2(Ω)). Then Ω is
Bergman complete.

Proof. Let Ω 3 zj → z0 ∈ ∂Ω. For f ∈ H2(Ω) by the assumption we can find fk ∈ H2(Ω)
such that limj→∞ |fk(zj)| < ∞ and limk→∞ ||fk − f || → 0. Then for every k

lim
j→∞

|f(zj)|√
kΩ(zj)

≤ lim
j→∞

|fk(zj)|√
kΩ(zj)

+ ||f − fk|| = ||f − fk||.

It follows that

lim
z→∂Ω

|f(z)|√
kΩ(z)

= 0

and we use Theorem 4.1.4.

We will now prove several results relating the Bergman kernel and metric with the
pluricomplex Green function. The first one is essentially due to Herbort [Her] (see also
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[Che1]).

Theorem 4.1.9. If Ω is a pseudoconvex domain in Cn then we have

|f(w)|√
kΩ(w)

≤
(

1 +
4∫∞

n
dx
xex

)
||f ||L2({gΩ,w≤−1}), w ∈ Ω, f ∈ H2(Ω).

Proof. We will use Theorem A5.3 with ϕ := 2ng and ψ := − log(−g), where g := gΩ,w.
Since g is a locally bounded plurisubharmonic function in Ω\{w}, it follows from Theorem
2.1.9 that i∂g∧∂g∧ (i∂∂|z|2)n−1 is a positive Borel measure on Ω\{w} and one can easily
deduce that ∂g ∈ L2

loc,(0,1)(Ω \ {w}). Set

α := ∂(f · γ ◦ g) = f · γ′ ◦ g ∂g ∈ L2
loc,(0,1)(Ω),

where γ ∈ C0,1((−∞, 0)) with γ′(t) = 0 near −∞ will be specified later. We have

iα ∧ α = |f |2(γ′ ◦ g)2i∂g ∧ ∂g ≤ |f |2(γ′ ◦ g)2g2i∂∂ψ.

By Theorem A5.3 we can find u ∈ L2
loc(Ω) such that ∂u = α and

∫

Ω

|u|2e−2ngdλ ≤ 16
∫

Ω

|f |2(γ′ ◦ g)2g2e−2ngdλ.

If for a < −1 we take

γ(t) :=





∫ −1

max{t,a}

e2ns

s
ds, t ≤ −1,

0, −1 < t < 0,

we will get
||u||L2(Ω) ≤ 4||f ||L2({g≤−1}).

The function f · γ ◦ g − u is equal almost everywhere to a holomorphic f̃ . Moreover, since
e−ϕ is not locally integrable near w it follows that f̃(w) = γ(a)f(w). We also have

||f̃ || ≤ γ(a)||f ||L2({g≤−1}) + ||u||L2(Ω) ≤ (γ(a) + 4)||f ||L2({g≤−1}).

Therefore by (4.1.2)
|f(w)|√
kΩ(w)

=
|f̃(w)|

γ(a)
√

kΩ(w)
≤ ||f̃ ||

γ(a)

and the desired estimate follows if we let a → −∞.
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Theorem 4.1.10. For a bounded pseuudoconvex domain Ω in Cn consider the following
conditions

i) Ω is hyperconvex;
ii) lim

w→∂Ω
λ({gΩ,w ≤ −1}) = 0;

iii) Ω is Bergman complete;
iv) lim

w→∂Ω
kΩ(w) = ∞.

Then i)⇒ii)⇒iii) and ii)⇒iv).

Proof. Theorem 3.3.7 gives i)⇒ii). The implication ii)⇒iii) follows immediately from
Theorems 4.1.4 and 4.1.9 and if we use Theorem 4.1.9 for constant functions then we get
ii)⇒iv).

The implication i)⇒iv) in Theorem 4.1.10 is due to Ohsawa [Ohs]. i)⇒iii) was proved
independently in [BP] and [Her].

For n ≥ 2 ii) does not imply i), as the following example shows. It is due to Herbort
[Her] who used it to show that iii) 6⇒i) in a much more complicated way.

Exercise Set
Ω := {z ∈ ∆∗ ×∆ : |z2| < e−1/|z1|},

where ∆ stands for the unit disc in C. Show that Ω is pseudoconvex but not hyperconvex.
For w ∈ Ω denote gw := gΩ,w. Prove that

gΩ,w(z) ≥ log
|w1|

1 + 2|w1|2
log |z2|

log e−1/(2|w1|) , if |z1| ≥ 2|w1|

and conclude that i) holds.

The next result, due to Chen [Che2] for n = 1, coupled with Corollary 4.1.8 implies
that iv)⇒iii) holds in Theorem 4.1.10 for n = 1.

Theorem 4.1.11. Let Ω and U be bounded domains in Cn such that Ω∪U is pseudoconvex
with diameter R. Assume that U ⊂ B(z0, r). Then for every f ∈ H2(Ω) there exists
F ∈ H2(Ω ∪ U) such that for every λ > 1 we have

||F − f ||L2(Ω) ≤
(

1 +
4

log λ

)
||f ||L2(Ω∩B(z0,R(r/R)1/λ).

Proof. For t < R set η(t) := − log(− log t/R) and ψ(z) := η(|z − z0|) for z ∈ B(z0, R).
Then −e−ψ is plurisubharmonic and i∂ψ ∧ ∂ψ ≤ i∂∂ψ. Fix ρ ∈ (r,R) and define

χ(s) :=





0, s < η(r),
s−η(r)

η(ρ)−η(r) , η(r) ≤ s < η(ρ),

1, s ≥ η(ρ).
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Then α := ∂f̂ ∈ L2
loc,(0,1)(Ω ∪B(z0, r)), where

f̂ :=
{

f · γ ◦ ψ, in Ω,

0, in B(z0, r).

By Theorem A5.3, applied with ϕ = 0 and h = |f |2(χ′ ◦ ψ)2 in Ω ∪ U , we can find
u ∈ L2(Ω ∪ U) such that ∂u = α and

∫

Ω∪U

|u|2dλ ≤ 16
(η(ρ)− η(r))2

∫

Ω∩B(z0,ρ)

|f |2dλ.

It follows that there exists F ∈ H2(Ω ∪ U) such that F = f̂ − u almost everywhere.
Moreover,

||F − f ||L2(Ω) ≤ ||f(1− γ ◦ ψ)||L2(Ω) + ||u||L2(Ω)

≤
(

1 +
4

η(ρ)− η(r)

)
||f ||L2(Ω∩B(z0,ρ)).

It is now enough to take ρ := R(r/R)1/λ.

The following estimate for the Bergman distance was proven in [BÃlo3].

Theorem 4.1.12. Let Ω be a bounded pseudoconvex domain in Cn and let w, w̃ ∈ Ω be
such that {gw,Ω ≤ −1} ∩ {g

w̃,Ω
< −1} = ∅. Then

dist Ω(w, w̃) ≥ π

2
− arctan

(
1 +

4en

∫∞
n

dx
xex

)
.

Proof. Set f := KΩ(·, w̃)/
√

kΩ(w̃). Define also ϕ := 2n(g + g̃) and ψ := − log(−g), where
g := gΩ,w and g̃ := g̃Ω,w. Let a, γ and α be defined in the same way as in the proof of
Theorem 4.1.9, then

iα ∧ α ≤ |f |2(γ′ ◦ g)2g2i∂∂ψ = χ{g≤−1}|f |2e2ngi∂∂ψ.

Theorem A5.3 gives u ∈ L2
loc(Ω) with ∂u = α and

∫

Ω

|u|2e−ϕdλ ≤ 16
∫

{g≤−1}
|f |2e2nge−ϕdλ ≤ 16e2n,

since g̃ ≥ −1 on {g ≤ −1} and ||f || = 1. Therefore there exists holomorphic f̃ equal to
(f · γ ◦ g − u)/γ(a) almost everywhere such that

(4.1.6) ||f̃ || ≤ 1 +
4en

γ(a)
.
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Moreover, since e−ϕ is not locally integrable near w and w̃, we have f̃(w) = f(w) and
f̃(w̃) = 0 (the latter one because g(w̃) ≥ −1).

We have 〈f̃ , f〉 = f̃(w̃)/
√

kΩ(w̃) = 0. It follows that we can find an orthonormal basis
φ0, φ1, . . . of H2(Ω) such that φ0 = f and φ1 = f̃/||f̃ ||. Then

kΩ(w) =
∞∑

j=0

|φj(w)|2 ≥ |f(w)|2(1 + ||f̃ ||−2)

and
|KΩ(w, w̃)|2
kΩ(w)kΩ(w̃)

=
|f(w)|2
kΩ(w)

≥ ||f̃ ||2
1 + ||f̃ ||2

.

By Proposition 4.1.6

dist Ω(w, w̃) ≥ arccos
||f̃ ||√

1 + ||f̃ ||2
=

π

2
− arctan ||f̃ ||.

It remains to use (4.1.6) and let a → −∞.

4.2. Separately analytic functions (being written)

4.3.Approximation of smooth functions (being written)

4.4. Complex dynamics (being written)
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Appendix

A1. Lipschitz continuous functions

The following two results can be found in [ÃLoj]:

Theorem A1.1. (Rademacher) A Lipschitz continuous function defined on an open set
in Rn is differentiable in the classical sense almost everywhere.

Theorem A1.2. If u is a Lipschitz continuous function of one variable defined in a
neighborhood of an interval [a, b], then

u(b)− u(a) =
∫ b

a

u′(t)dt.

Proposition A1.3. If u ∈ Lip(Ω) and ϕ ∈ C1
0 (Ω) then

∫

Ω

Dj(uϕ)dλ = 0, j = 1, . . . , n.

Proof. By partition of unity we may assume that suppϕ ⊂ [a1, b1] × · · · × [an, bn] ⊂ Ω
and j = n. By Theorem A1.2

∫ bn

an

(Dj(uϕ)) (x1, . . . , xn−1, t)dt = 0

for all xk ∈ [ak, bk], k = 1, . . . , n−1. The proposition now follows from the Fubini theorem.

Proposition A1.4. Let f be continuous and u Lipschitz continuous such that Dnu = f
almost everywhere. Then Dnu = f everywhere.
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Proof. We may assume that u and f are defined in a neighborhood of I, where I = I ′×In

is an open cube. For some t0 ∈ In set

v(x) :=
∫ xn

t0

f(x′, t)dt, x = (x′, xn) ∈ I,

and w := u − v. Then w is continuous, w(x′, ·) is Lipschitz continuous for every x′ ∈ I ′

and Dnw = 0 almost everywhere in I. It is enough to show that w is independent of xn.
The proof of Proposition A1.3 gives

0 =
∫

I

ϕDnw dλ = −
∫

I

wDnϕ dλ, ϕ ∈ C1
0 (I).

For test functions of the form ϕ(x) = ϕ1(x′)ϕ2(xn) we obtain

∫

I′
ϕ1(x′)

∫

In

w(x′, xn)ϕ′2(xn)dxndλ(x′) = 0.

Thus for all x′ ∈ I ′ and ϕ2 ∈ C1
0 (In)

∫

In

w(x′, xn)ϕ′2(xn)dxn = 0.

By Theorem A1.2 (w(x′, ·))′ = 0 for all x′ ∈ I ′ and thus w(x′, ·) is constant.

Proposition A1.5. Assume that u ∈ C1,1(Ω) and |D2u| ≤ M . Then

|u(x + h) + u(x− h)− 2u(x)| ≤ M |h|2, x ∈ Ω, |h| < dist (x, ∂Ω).

Proof. If u is C2 then it follows easily from the Taylor formula with the Lagrange remain-
der. The general case may then be obtained by approximation.

A2. Some lemmas on measure theory and topology

Lemma A2.1. Let µj be a sequence of Radon measures on an open Ω ⊂ Rn converging
weakly to a Radon measure µ. Then

i) If G ⊂ Ω is open then µ(G) ≤ lim inf
j→∞

µj(G);

ii) If K ⊂ Ω is compact then µ(K) ≥ lim sup
j→∞

µj(K);

iii) If E b Ω is such that µ(∂E) = 0 then µ(E) = lim
j→∞

µj(E).
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Proof. i) Let L be a compact subset of G and let ϕ ∈ C0(G) be such that ϕ ≥ 0, ϕ = 1
on L. Then

µ(L) ≤ µ(ϕ) = lim µj(ϕ) ≤ limµj(G).

Interior regularity of µ gives i).
ii) Let U be an open neighborhood of K and let ϕ ∈ C0(U) be such that ϕ ≥ 0, ϕ = 1

on K. Then
µ(U) ≥ µ(ϕ) = lim µj(ϕ) ≥ lim µj(K).

Exterior regularity of µ gives ii).
iii) This is an obvious consequence of i) and ii).

Lemma A2.2. Let fj be a decreasing sequence of upper semicontinuous functions con-
verging to f and let µj be a sequence of nonnegative Borel measures converging weakly to
µ. If fjµj −→ ν weakly, then ν ≤ fµ.

Proof. For some j0 let gk be a sequence of continuous functions deacreasing to fj0 . Then
for j ≥ j0 we have fjµj ≤ fj0µj ≤ gkµj , hence ν ≤ gkµ. The Lebesgue monotone
convergence theorem yields ν ≤ fj0µ and ν ≤ fµ.

The next result is known as the Choquet lemma.

Lemma A2.3. Let {uα} be a family of upper semicontinuous functions on an open Ω ⊂ Rn

locally uniformly bounded above. Then there exists a countable subfamily {uαj} such that

(supα uα)∗ =
(
supj uαj

)∗
.

Proof. Let Bj be a countable basis of topology in Ω and set u := supα uα. For every j we
may find a sequence zjk ∈ Bj such that supBj

u = supk u(zjk). For every j and k there is
a sequence of indices αjkl such that u(zjk) = supl uαjkl

(zjk). Set v := supj,k,l uαjkl
. Then

sup
Bj

v ≥ sup
k

v(zjk) ≥ sup
k,l

uαjkl
(zjk) = sup

k
u(zjk) = sup

Bj

u,

thus v∗ ≥ u∗ and the lemma follows.

Lemma A2.4. Assume f, g : (−∞, 0) −→ (−1, 0) are continuous and such that f ≤ g < 0
and limt→0− f(t) = 0. Then there exists a convex, increasing χ : (−∞, 0) −→ (0, +∞)
such that limt→0− χ(t) = +∞ and χ ◦ g ≤ χ ◦ f + 1.

Proof. For s < 0 set h(s) := min{f(t) : g(t) ≥ s}. Then h(s) ≤ s and h(s) ↑ 0 as s ↑ 0.
One can find g : (−∞, 0) −→ (0, +∞) such that g(s) > s− h(s) ≥ 0 and g(s) ↓ 0 as s ↑ 0.
Set

χ(t) :=





1 if t ≤ −1,

1 +
∫ t

−1

1
g(s)

ds if − 1 < t < 0.
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Then χ is increasing and, since χ′(t) = 1/g(t) is increasing for t > −1, χ is convex.
Therefore for s = g(t) > −1 we obtain

χ(g(t)) ≤ χ(h(s)) + χ′(s)(s− h(s)) ≤ χ(f(t)) + 1

and the lemma follows.

A3.The Choquet capacitability theorem

If X is a topological space then a set function c defined on all subsets of X taking its
values at [0,+∞] is called a generalized capacity if it satisfies the following conditions

i) If E1 ⊂ E2 then c(E1) ≤ c(E2);
ii) If Ej ↑ E then c(Ej) ↑ c(E);
iii) If Kj ↓ K and Kj are compact then c(Kj) ↓ c(K).
From this point on we assume that all considered topological spaces are locally com-

pact and have a countable basis of topology. The main goal of this section is to prove the
following theorem due to Choquet.

Theorem A3.1. Let c be a generalized capacity on X. Then for every Borel subset E of
X we have

(A3.1) c(E) = c∗(E) = sup
K⊂E, K compact

c(K).

A subset of X is called Fσδ if it is a countable intersection of Fσ subsets. The main
tool in the proof of Theorem A3.1 will be the following fact.

Theorem A3.2. Let E be a relatively compact Borel subset of X. Then there exists a
compact topological space Y , an Fσδ subset A of Y and a continuous mapping f : Y −→ X
such that f(A) = E.

First we shall show how Theorem A3.2 implies Theorem A3.1.

Proof of Theorem A3.1. There exist compact subsets Kj increasing to X, therefore
c(E ∩Kj) ↑ c(E). Thus we may assume that E is relatively compact. Let A, Y and f be
as in Theorem A3.2. One can easily see that c ◦ f is a generalized capacity on Y , so we
may assume that E is Fσδ and X is a compact space. Write

E =
⋂

j≥1

Fj , Fj =
⋃

k≥1

Kjk,
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where Kjk are compact and increasing in k. Fix a < c(E). We may write

E =
⋃

k≥1

(
K1k ∩

⋂

j≥2

Fj

)
,

so there is k1 such that c(E1) > a, where

E1 = K1k1 ∩
⋂

j≥2

Fj .

For every l ≥ 1 we can find inductively kl ≥ 1 such that the sets

El = K1k1 ∩ · · · ∩Klkl
∩

⋂

j≥l+1

Fj

are decreasing and c(El) > a. If we set K :=
⋂

l Klkl
, then

c(K) = lim
l→∞

c (K1k1 ∩ · · · ∩Klkl
) ≥ lim

l→∞
c(El) ≥ a

and the theorem follows.

It remains to prove Theorem A3.2. First we need some simple properties of Fσδ

subsets.

Proposition A3.3. i) If A is an Fσδ and B a closed subset of X then A ∩B is Fσδ;
ii) If Aj are Fσδ subsets of compact spaces Yj , j = 1, 2, . . . , then

∏
Aj is Fσδ in

∏
Yj ;

Proof. i) It is enough to observe that
(⋂

k

⋃

l

Kkl

)
∩B =

⋂

k

⋃

l

Kkl ∩B.

ii) We may write
Aj =

⋂

k

⋃

l

Kjkl,

where Kjkl are compact in Yj . One can easily show that
∏

Aj =
⋂

k

⋃

l1,...,lk

K1kl1 × · · · ×Kkklk × Yk+1 × Yk+2 × . . .

Proof of Theorem A3.2. The sets E b X satisfying the hypothesis of the theorem we
will call K-analytic. Let X ′ be an open, relatively compact subset of X. Set

A := {E ⊂ X ′ : E and X ′ \ E are K-analytic}.
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If E ⊂ X ′ is open then E and X ′ \ E are Fσδ in X ′, hence A contains all open subsets
of X ′. Therefore, it remains to show that A is a σ-algebra. Assume that Ej ⊂ X ′ is a
sequence of K-analytic sets. We have to show that

⋃
Ej and

⋂
Ej are K-analytic.

First, we claim that for E b X to be K-analytic it is sufficient that the mapping f
is defined only on A. Indeed, in such a case by A′ denote the graph of f (over A) and
let Y ′ be the closure of A′ in the compact space Y × E. Thus Y ′ is compact and A′ is
closed in A×E, hence A′ is Fσδ in Y ′ by Proposition A3.3.i and ii. If f ′ : Y ′ −→ X is the
projection onto E, then f ′ is continuous and f ′(A′) = E which proves the claim.

Let Aj be Fσδ in a compact space Yj and let fj : Yj −→ X be continuous and such
that fj(Aj) = Ej . We may write

Aj =
⋂

k

⋃

l

Kjkl,

where Kjkl are compact in Yj . The disjoint union Y ′
j := Yj t {y0} is compact and so is

Y :=
∏

Y ′
j . Set

A :=
⋃

j

{y0} × · · · × {y0} ×Aj × {y0} × · · · =
⋂

k

⋃

l,j

{y0} × · · · × {y0} ×Kjkl × {y0} × . . . ,

so that A can be treated as a disjoint union
∐

Aj and A is Fσδ in Y . Now the mapping
f =

∐
fj : A −→ X defined by

f(y0, . . . , y0, yj , y
0, . . . ) = fj(yj), yj ∈ Aj , j = 1, 2, . . .

is continuous, hence f(A) =
⋃

Ej is K-analytic.
Now set

A := {y = (y1, y2, . . . ) ∈
∏

Aj : f1(y1) = f2(y2) = . . . }.

Then A is closed in
∏

Aj , hence it is an Fσδ subset of Y :=
∏

Yj . The mapping f : A −→ X
given by

f(y) = f1(y1) = f2(y2) = . . .

is continuous, thus f(A) =
⋂

Ej is K-analytic.

A4.Projective spaces over Hilbert spaces

Let H be an arbitrary Hilbert space over C. Set H∗ := H \ {0}. By P(H) we denote
the projective space over H, that is the set of all complex lines in H containing the origin.
We have the natural projection

π : H∗ 3 f 7−→ 〈f〉 ∈ P(H),
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where by 〈f〉 we denote the line given by f . Let

H〈f〉 := 〈f〉⊥ = {g ∈ H : 〈g, f〉 = 0}
and by Up denote the set of lines in H that are not perpendicular to p ∈ P(H), that is

U〈f〉 = {〈g〉 ∈ P(H) : 〈g, f〉 6= 0}.
Every f ∈ H∗ gives a map

Φf : H〈f〉 3 w 7−→ 〈f + w〉 ∈ U〈f〉.

It is bijective and its inverse is given by

Φ−1
f (〈g〉) =

||f ||2
〈g, f〉g − f, 〈g〉 ∈ U〈f〉.

For f, g ∈ H∗ we also have Φf = Φg ◦ Lf,g on Φ−1
f (U〈f〉 ∩ U〈g〉), where the mapping

Lf,g : H〈f〉 3 w 7−→ ||g||2
〈w + f, g〉 (w + f)− g ∈ H〈g〉

is a smooth diffeomorphism. The mappings Φf give therefore P(H) a structure of a complex
manifold.

For p ∈ P(H) the tangent space TpP(H) is defined as S/ ∼, where S is the class of
smooth curves γ : (−ε, ε) → P(H) with γ(0) = p and γ ∼ η if and only if (Φ−1

f ◦ γ)′(0) =
(Φ−1

f ◦ η)′(0), where f ∈ H \ Hp (then p ∈ U〈f〉). The definition of the relation ∼ is
independent of the choice of such an f because

(Φ−1
g ◦ γ)′(0) = (Lf,g ◦ Φ−1

f ◦ γ)′(0) = L′f,g(Φ
−1
f (p)) ◦ (Φ−1

f ◦ γ)′(0), f, g ∈ H \Hp.

We then have
π′(f) : H 3 X 7−→ [〈f + tX〉] ∈ T〈f〉P(H), f ∈ H∗.

On H∗ we define the metric form P2 by

P2(f,X) :=
∂2

∂λ∂λ
log ||f + λX||2

∣∣∣∣
λ=0

=
||X||2
||f ||2 − |〈X, f〉|2

||f ||4 , f ∈ H∗, X ∈ H.

The Fubini-Study metric form F2 on P(H) is then given as the push-forward of P2 by π:

F2(π(f), π′(f).X) := P2(f,X), f ∈ H∗, X ∈ H.

Proposition A4.1. The form F2 is well defined.

Proof. Assume that π(f) = π(g) and π′(f).X = π′(g).Y . Then g = λf for some λ ∈ C∗
and thus π′(g) = λ−1π′(f), hence π′(f).(Y − λX) = 0. Since

(Φ−1
f )′(π(f)).(π′(f).X) = (Φ−1

f ◦ π)′(f).X = X − 〈X, f〉
||f ||2 f, f ∈ H∗, X ∈ H,
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it follows that
kerπ′(f) = 〈f〉, f ∈ H∗.

We can therefore find a ∈ C such that Y = λX + af . Then

P2(g, Y ) =
||λX + af ||2
|λ|2||f ||2 − |λ〈X, f〉+ a||f ||2|2

|λ|2||f ||4

=
||X||2
||f ||2 − |〈X, f〉|2

||f ||4
= P2(f, X).

Since

Φ′f (w) : H〈f〉 3 X 7−→ [〈f + w + tX〉] ∈ T〈f〉P(H), f ∈ H∗, w ∈ H〈f〉,

in the local coordinates given by Φf we have

Φ∗fF2(w, Y ) = F2(Φf (w), Φ′f (Y )) = P2(f + w, Y )

=
∂2

∂λ∂λ
log(||f ||2 + ||w + λY ||2)

∣∣∣∣
λ=0

=
||Y ||2

||f ||2 + ||w||2 −
|〈Y,w〉|2

(||f ||2 + ||w||2)2 , f ∈ H∗, w, Y ∈ H〈f〉.

If η : [0, 1] → P(H) is a continuous and piecewise smooth curve then its length is given
by

l(η) =
∫ 1

0

F(η(t), η′(t))dt

and the distance d(x, y) between x, y ∈ P(H) is defined as the infimum of l(η) taken over
all such η with η(0) = x, η(1) = y.

Proposition A4.2. For f, g ∈ H∗ we have

d(〈f〉, 〈g〉) = arccos
|〈f, g〉|
||f || ||g|| .

Proof. We may assume that ||f || = ||g|| = 1. Let η : [0, 1] → P(H) be a continuous,
piecewise smooth curve with η(0) = 〈f〉, η(1) = 〈g〉. First assume that η([0, 1]) ⊂ U〈f〉.
Set η̃ := Φ−1

f ◦ η : [0, 1] → H〈f〉, so that η̃(0) = 0, η̃(1) =: w. Then

l(η) =
∫ 1

0

( ||η̃′(t)||2
1 + ||η̃(t)||2 −

|〈η̃(t), η̃′(t)〉|2
(1 + ||η̃(t)||2)2

)1/2

dt ≥
∫ 1

0

||η̃′(t)|| dt

1 + ||η̃(t)||2 .
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Set χ(t) := ||η̃′(t)||. Then

χ′(t) =
Re 〈η̃(t), η̃′(t)〉

||η̃(t)|| ≤ ||η̃′(t)||.

Therefore

l(η) ≥
∫ 1

0

χ′(t) dt

1 + χ(t)2
= arctan ||w|| = arccos |〈f, g〉|

(the latter inequality follows from the fact that

|〈f, g〉| = (1 + ||w||2)−1/2).

If η([0, 1]) 6⊂ U then let t0 ∈ (0, 1] be a maximal number satisfying [0, t0) ⊂ U . Then
η(t0) /∈ U and similarly as before

l(η) ≥
∫ t0

0

F(η(t), η′(t))dt ≥ π

2
≥ arccos |〈f, g〉|.

On the other hand, one can easily check that the curve

η(t) = [(1− t)〈g, f〉f + tg], t ∈ [0, 1],

has the required length.

Proposition A4.3. Assume that 〈fk〉 → 〈f〉 in P(H), fk, f ∈ H∗. Then we can find
λk ∈ C∗ such that λkfk → f in H.

Proof. Set

λk :=
|〈fk, f〉| ||f ||
〈fk, f〉 ||fk|| .

Then

||λkfk − f ||2 = |λ|2||fk||2 − 2Re (λk〈fk, f〉) + ||f ||2 = 2||f ||2 − 2
|〈fk, f〉| ||f ||

||fk|| → 0

by Proposition A4.2.

A5. Some variations of the Hörmander L2-estimate

First we will sketch the proof of a generalization of [Hör1, Lemma 4.4.1] in case
p = q = 0. As we will see, one needs to follow [Hör1] with only slight modifications.
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Theorem A5.1. Assume that ϕ ∈ PSH(Ω), where Ω is a pseudoconvex domain in Cn.
Let α ∈ L2

loc,(0,1)(Ω) be such that ∂α = 0 and

(A5.1) iα ∧ α ≤ hi∂∂ϕ

for some nonnegative function h ∈ L1
loc(Ω) such that the right hand-side of (A5.1) makes

sense as a current of order 0 (this is always the case if h is locally bounded). Then there
exists u ∈ L2

loc(Ω) with ∂u = α and

(A5.2)
∫

Ω

|u|2e−ϕdλ ≤
∫

Ω

he−ϕdλ.

Sketch of proof. If the right hand-side of (A5.2) is not finite it is enough to apply [Hör1,
Theorem 4.2.2], we may thus assume that it is finite and even equal to 1. We first consider
the case when ϕ is smooth (then of course the right hand-side of (A5.1) is a current of order
0 for every h ∈ L1

loc(Ω)). We follow the proof of [Hör1, Lemma 4.4.1] and its notation: the
function s is smooth, strongly plurisubharmonic in Ω and such that Ωa := {s < a} b Ω
for every a ∈ R. We fix a > 0 and choose ην ∈ C∞0 (Ω), ν = 1, 2, . . . , such that 0 ≤ ην ≤ 1
and Ωa+1 ⊂ {ην = 1} ↑ Ω as ν ↑ ∞. Let ψ ∈ C∞(Ω) vanish in Ωa and satisfy |∂ην |2 ≤ eψ,
ν = 1, 2, . . . , and let χ ∈ C∞(R) be convex and such that χ = 0 on (−∞, a), χ ◦ s ≥ 2ψ
and χ′ ◦ s i∂∂s ≥ (1 + a)|∂ψ|2i∂∂|z|2. This implies that with ϕ′ := ϕ + χ ◦ s we have in
particular

(A5.3) i∂∂ϕ′ ≥ i∂∂ϕ + (1 + a)|∂ψ|2i∂∂|z|2.

The ∂-operator gives the densely defined operators T and S between Hilbert spaces:

L2(Ω, ϕ1)
T−→ L2

(0,1)(Ω, ϕ2)
S−→ L2

(0,2)(Ω, ϕ3),

where ϕj := ϕ′ + (j − 3)ψ, j = 1, 2, 3. (Recall that, if

F =
∑

|J|=p
|K|=q

′
FJKdzJ ∧ dzK ∈ L2

loc,(p,q)(Ω),

then
|F |2 =

∑

J,K

′|FJK |2,

L2
(p,q)(Ω, ϕ) = {F ∈ L2

loc,(p,q)(Ω) : ||F ||2ϕ :=
∫

Ω

|F |2e−ϕdλ < ∞},

〈F, G〉ϕ :=
∫

Ω

∑

J,K

′
FJKGJKe−ϕdλ, F, G ∈ L2

(p,q)(Ω, ϕ).)
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For f =
∑

j fjdzj ∈ C∞0,(0,1)(Ω) one can then compute

(A5.4) |Sf |2 =
∑

j<k

∣∣∣∣
∂fj

∂zk
− ∂fk

∂zj

∣∣∣∣ =
∑

j,k

∣∣∣∣
∂fj

∂zk

∣∣∣∣−
∑

j,k

∂fj

∂zk

∂fk

∂zj

and
eψT ∗f = −

∑

j

δjfj −
∑

j

fj
∂ψ

∂zj
,

where

δjw := eϕ′ ∂

∂zj
(we−ϕ′) =

∂w

∂zj
− w

∂ϕ′

∂zj
.

Therefore

(A5.5) |
∑

j

δjfj |2 ≤ (1 + a−1)e2ψ|T ∗f |2 + (1 + a)|f |2|∂ψ|2.

Integrating by parts we get
∫

Ω

|
∑

j

δjfj |2e−ϕ′dλ =
∫

Ω

∑

j,k

(
∂2ϕ′

∂zj∂zk

fjfk +
∂fj

∂zk

∂fk

∂zj

)
e−ϕ′dλ.

Combining this with (A5.3)-(A5.5) we arrive at

(A5.6)
∫

Ω

∑

j,k

∂2ϕ′

∂zj∂zk

fjfke−ϕ′dλ ≤ (1 + a−1)||T ∗f ||2ϕ1
+ ||Sf ||2ϕ3

.

If we write α =
∑

j αjdzj then

iα ∧ α =
∑

j,k

αjαkidzj ∧ dzk

and by (A5.1)

|
∑

j

αjfj |2 ≤ h
∑

j,k

∂2ϕ

∂zj∂zk

fjfk.

Hence, from the Schwarz inequality, (A5.6) and from the fact that ϕ − 2ϕ2 ≤ −ϕ′ we
obtain

|〈α, f〉ϕ2 |2 ≤ (1 + a−1)||T ∗f ||2ϕ1
+ ||Sf ||2ϕ3

for all f ∈ C∞0,(0,1)(Ω) and thus also for all f ∈ DT∗ ∩ DS (recall that we have assumed
that the right hand-side of (A5.2) is 1). If f ′ ∈ L2

(0,1)(Ω, ϕ2) is orthogonal to the kernel of
S then it is also orthogonal to the range of T and thus T ∗f ′ = 0. Moreover, since Sα = 0,
we then also have 〈α, f ′〉ϕ2 = 0. Therefore

|〈α, f〉ϕ2 | ≤
√

1 + a−1||T ∗f ||ϕ1 , f ∈ DT∗ .
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By the Hahn-Banach theorem there exists ua ∈ L2(Ω, ϕ1) with ||ua||ϕ1 ≤
√

1 + a−1 and

〈α, f〉ϕ2 = 〈ua, T ∗f〉ϕ1 , f ∈ DT∗ .

This means that Tua = α and, since ϕ1 ≥ ϕ with equality in Ωa, we have
∫

Ωa

|ua|2e−ϕdλ ≤ 1 + a−1.

We may thus find a sequence aj ↑ ∞ and u ∈ L2
loc(Ω) such that uaj

converges weakly to
u in L2(Ωa, ϕ) = L2(Ωa) for every a. This proves the theorem for smooth ϕ.

Now assume that ϕ is strongly plurisubharmonic (but otherwise arbitrary, that is
possibly even not locally bounded). By the Radon-Nikodym theorem there exists β =∑

j,k βjkidzj ∧ dzk ∈ L1
loc,(1,1)(Ω) such that 0 < β ≤ i∂∂ϕ and iα ∧ α ≤ hβ. For ε > 0

let a(ε) be such that ϕε := ϕ ∗ ρε ∈ C∞(Ωa(ε)). If (ϕjk
ε ) denotes the inverse matrix of

(∂2ϕε/∂zj∂zk) then hε :=
∑

j,k ϕjk
ε αjαk is the least function satisying iα ∧ α ≤ hεi∂∂ϕε.

By the previous part we can find uε ∈ L2
loc(Ωa(ε)) such that ∂uε = α in Ωa(ε) and

∫

Ωa(ε)

|uε|2e−ϕεdλ ≤
∫

Ωa(ε)

hεe
−ϕεdλ ≤

∫

Ωa(ε)

hεe
−ϕdλ.

We have βε := β ∗ ρε ≤ i∂∂ϕε and there is a sequence εl ↓ 0 such that the coefficients of
βεl

converge pointwise almost everywhere to the respective coefficients of β. Therefore

lim
l→∞

hεl
≤ lim

l→∞

∑

j,k

βjk
εl

αjαk =
∑

j,k

βjkαjαk ≤ h,

where (βjk) and (βjk
ε ) denote the inverse matrices of (βjk) and (βjk ∗ ρε), respectively. By

the Fatou lemma we thus have

lim
l→∞

∫

Ωa(εl)

|uεl
|2e−ϕεl dλ ≤ 1.

Since ϕεl
is a decreasing sequence, we see that the L2 norm of uεl

over Ωa is bounded for
every fixed a. Therefore, replacing εl with its subsequence if necessary, we see that uεl

converges weakly in Ωa for every a to u ∈ L2
loc(Ω). For every a and δ > 0 we then have

∫

Ωa

|u|2e−ϕεl dλ ≤ 1 + δ

which completes the proof for strongly plurisubharmonic ϕ.
If ϕ is not necessarily strongly plurisubharmonic then we may approximate it by

functions of the form ϕ + ε|z|2. Note that iα ∧ α ≤ h i∂∂(ϕ + ε|z|2) and the general case
easily follows along the same lines as before.
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The next result is due to Berndtsson [Ber1] (see also [Ber2]).

Theorem A5.2. Let Ω, ϕ, α and h be as in Theorem A5.1. Fix r ∈ (0, 1) and assume
in addition that −e−ϕ/r ∈ PSH(Ω). Then for any ψ ∈ PSH(Ω) we can find u ∈ L2

loc(Ω)
with ∂u = α and ∫

Ω

|u|2eϕ−ψdλ ≤ 1
(1−√r)2

∫

Ω

heϕ−ψdλ.

Proof. Approximating −e−ϕ/r and ψ in the same way as in the proof of Theorem A5.1
we may assume that ϕ and ψ are smooth up to the boundary. Then we have in particular
L2(Ω) = L2(Ω, aϕ + bψ) for real a, b and −e−ϕ/r ∈ PSH(Ω) means precisely that

i∂ϕ ∧ ∂ϕ ≤ r i∂∂ϕ.

Let u be the solution to ∂u = α which is minimal in the L2(Ω, ψ) norm. This means that
∫

Ω

ufe−ψdλ = 0, f ∈ H2(Ω).

Set v := eϕu. Then ∫

Ω

vfe−ϕ−ψdλ = 0, f ∈ H2(Ω),

thus v is the minimal solution in the L2(Ω, ϕ + ψ) norm to ∂v = β, where

β = ∂(eϕu) = eϕ(α + u∂ϕ).

For every t > 0 we have

iβ ∧ β ≤ e2ϕ[(1 + t−1)iα ∧ α + (1 + t)|u|2i∂∂ϕ]
≤ e2ϕ[(1 + t−1)h + (1 + t)r|u|2]i∂∂ϕ

≤ e2ϕ[(1 + t−1)h + (1 + t)r|u|2]i∂∂(ϕ + ψ).

Therefore by Theorem A5.1∫

Ω

|u|2eϕ−ψdλ =
∫

Ω

|v|2e−ϕ−ψdλ ≤ (1 + t−1)
∫

Ω

heϕ−ψdλ + (1 + t)r
∫

Ω

|u|2eϕ−ψdλ.

For t = r−1/2 − 1 we obtain the required result.

Applying Theorem A5.2 with r = 1/4 and ϕ, ψ replaced with ϕ/4, ψ + ϕ/4, respec-
tively, we obtain the following estimate essentially due to Donnelly and Fefferman [DF].

Theorem A5.3. Let Ω, ϕ, α and h satisfy the assumptions of Theorem A5.1. Assume
moreover that −e−ϕ ∈ PSH(Ω). Then for any ψ ∈ PSH(Ω) we can find u ∈ L2

loc(Ω) with
∂u = α and ∫

Ω

|u|2e−ψdλ ≤ 16
∫

Ω

he−ψdλ.
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Some open problems

Problem 1. Assume that a domain Ω b Cn is such that each of its boundary points
admits a local weak plurisubharmonic barrier (that is for every z0 ∈ ∂Ω there exists a
neighborhood U of z0 and u ∈ PSH(Ω ∩ U) such that u < 0 and limz→z0 u(z) = 0). Is Ω
hyperconvex? Note that Theorem 1.4.7 would be a direct consequence of a positive answer.

Problem 2. Let Ω be a bounded pseudoconvex domain in Cn admitting a local weak
plurisubharmonic barrier at some z0 ∈ ∂Ω. Does there exist a global (defined on Ω) weak
plurisubharmonic barrier at z0? A solution in the affirmative would solve Problem 1, since,
using the Hartogs figures, one can show that a domain from Problem 1 is pseudoconvex.

Problem 3. Is being an unbounded maximal plurisubharmonic function a local property?

Problem 4. Let P = ∆2 be the unit bidisk. For (z, w) ∈ ∂P set f(z, w) := (Re z)2(Re w)2

so that f is subharmonic on every analytic disk embedded in ∂P . Therefore, by Theorem
2.3.2, u := uf,P ∈ PSH ∩ C1,1(P ) ∩ C(P ). One can show that u = 0 on the set {(z, w) ∈
P : |z + w| ≤ |1− zw|}. It can also be proved that for every ε > 0 the function

vε(z, w) =
ε2

4

(∣∣∣∣
z + w

ε + 1− zw

∣∣∣∣
2

− 1

)

satisfies vε ≤ u in P . An elementary computation then gives for t ∈ (0, 1)

u(t, t)

{
= 0 if t ≤ √

2− 1,

≥ 2−4
(
(2t)2/3 − (1− t2)2/3

)6
if t ≥ √

2− 1.

This means that u /∈ C6(P ). We conjecture that in fact u /∈ C2(P ).

Problem 5. Are the product formulas (3.1.3) and (3.2.1) (without regularizations) true
for arbitrary sets Kj?

Problem 6. Let Ω be a bounded hyperconvex domain in Cn. Assume that sequences
zj , wj ∈ Ω tend to z0 ∈ Ω, w0 ∈ ∂Ω, respectively. Does it follow that gΩ,wj

(zj) −→ 0? In
other words, is it true that gΩ is continuous at the points from ∂Ω×Ω (if we assume that
it vanishes there)?

95



References

[Bed1] E. Bedford, Extremal plurisubharmonic functions and pluripolar sets in C2. Math.
Ann. 249 (1980), 205-223.

[Bed2] E. Bedford, Envelopes of continuous plurisubharmonic functions. Math.Ann. 251
(1980), 175-183.

[BD] E. Bedford, J.-P. Demailly, Two counterexamples concerning the pluri-complex
Green function in Cn. Indiana Univ. Math. J. 37 (1988), 865-867.

[BT1] E. Bedford, B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère
equation. Invent.Math. 37 (1976), 1-44.

[BT2] E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions. Acta
Math. 149 (1982), 1-41.

[Ber1] B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of
Donnelly-Fefferman. Ann. Inst. Fourier 46 (1996), 1083-1094.

[Ber2] B. Berndtsson, Weighted estimates for the ∂-equation. Complex Analysis and Ge-
ometry, Columbus, Ohio, 1999, Ohio State Univ.Math. Res. Inst. Publ. 9, pp. 43-57,
Walter de Gruyter, 2001.

[BÃlo1] Z. B locki, Estimates for the complex Monge-Ampère operator. Bull. Pol. Acad. Sci.
41 (1993), 151-157.

[BÃlo2] Z. B locki, Equilibrium measure of a product subset of Cn. Proc. Amer. Math. Soc.
128 (2000), 3595-3599.

[BÃlo3] Z. B locki, The Bergman metric and the pluricomplex Green function. Preprint.
[BKL] Z. B locki, S. Ko lodziej, N. Levenberg, Extremal functions and equilibrium mea-

sures for Borel sets. Bull. Pol. Acad. Sci. 45 (1997), 291-296.
[BP] Z. B locki, P. Pflug, Hyperconvexity and Bergman completeness. Nagoya Math. J.

151 (1998), 221-225.
[Bre] H. Bremermann, Holomorphic continuation of the kernel function and the Bergman

metric in several complex variables. Lectures on Functions of a Complex Variable,
pp. 349-383, Univ. of Michigan Press, 1955.

[Ceg] U. Cegrell, Capacities in complex analysis. Aspects of Math. E14, Vieweg, 1988.
[Che1] B.-Y. Chen, Completeness of the Bergman metric on non-smooth pseudoconvex do-

mains. Ann.Pol.Math. 71 (1999), 241-251.
[Che2] B.-Y. Chen, A remark on the Bergman completeness. Complex Variables Theory

Appl. 42 (2000), 11-15.
[CLN] S. S. Chern, H. I. Levine, L. Nirenberg, Intrinsic norms on a complex manifold.

Global Analysis, Univ. of Tokyo Press, 1969, 119-139.
[Dem1] J.-P. Demailly, Mesures de Monge-Ampère et mesures plurisousharmoniques. Math.

Z. 194 (1987), 519-564.
[Dem2] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory.

Complex analysis and geometry, 115-193, Univ. Ser. Math., Plenum, New York, 1993.
[Dem3] J.-P. Demailly, Potential theory in several complex variables. Preprint, 1991.

[DF] H. Donnelly, C. Fefferman, L2-cohomology and index theorem for the Bergman
metric. Ann. Math. 118 (1983), 593-618.

96



[HK] R. Harvey, A.W. Knapp, Positive (p, p) forms, Wirtinger’s inequality, and currents.
Value Distribution Theory, R.O. Kujala and A.L. Vitter III (ed.), Part A, pp. 43-62,
Dekker 1974.

[Her] G. Herbort, The Bergman metric on hyperconvex domains. Math. Z. 232 (1999),
183-196.
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