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Abstract We prove a local regularity (and a corresponding a priori estimate) for
plurisubharmonic solutions of the nondegenerate complex Monge–Ampère equation
assuming that their W 2,p-norm is under control for some p > n(n−1). This condition
is optimal. We use in particular some methods developed by Trudinger and an estimate
for the complex Monge–Ampère equation due to Kołodziej.

1 Introduction

The aim of this note is to prove the following a priori estimate for the complex
Monge–Ampère equation:

Theorem Assume that p > n(n − 1). Let u ∈ W 2,p(�) (that is partial derivatives
of u up to the second order are in L p(�)), where � is a domain in C

n, be a plurisub-
harmonic solution of

det
(
uz j z̄k

) = ψ > 0. (1)

Assume that ψ ∈ C1,1(�) (that is ψ ∈ C1(�) and the second partial derivatives of
ψ are Lipschitz continuous). Then for �′ � � we have
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sup
�′
�u ≤ C,

where C is a constant depending only on n, p, dist(�′, ∂�), inf� ψ , ||ψ ||C1,1(�) and
||�u||L p(�).

By a complex version of the Evans–Krylov theory (see e.g. [5] or [11]), once one
has an upper bound for the Laplacian (and thus for mixed complex second deriva-
tives) then also a C2,α-estimate follows. We thus get the following local regularity of
plurisubharmonic solutions of (1)

u ∈ W 2,p
loc for some p > n(n − 1), ψ ∈ C∞ �⇒ u ∈ C∞. (2)

For p > 2n(n − 1) this (and the theorem) is a consequence of a general real theory
from [13] (see [4]). For p > n2 a similar a priori estimate for C3-solutions (without
a regularity result though) was recently shown in [7].

The main point about our result is that the condition p > n(n − 1) is essentially
optimal. The fact that it is false for p < n(n − 1) follows from a complex counterpart
of Pogorelov’s example [10] from [4]: the function

u(z) = (1 + |z1|2)|z′|2−2/n,

where z′ = (z2, . . . , zn), is in W 2,p
loc if and only if p < n(n − 1), plurisubharmonic in

C
n , and satisfies

det
(
uz j z̄k

) = cn(1 + |z1|2)n−2 ∈ C∞(Cn)

(cn is a constant depending only on n) in the weak sense of [2].
The corresponding estimates and regularity for the real Monge–Ampère equation

can be found in [14].
The main tool in the proof of Theorem will be the following estimate of Kołod-

ziej [8] (see also [9]): if a plurisubharmonic u with u ≥ 0 on ∂� solves (1) (with ψ
satisfying only ψ ≥ 0) then for q > 1 we have

sup
�

(−u) ≤ C(q, n, diam�)||ψ ||1/n
Lq (�). (3)

This result for q = 2 is due to Cheng and Yau (see [1,6]).

2 Proof of Theorem

By C1,C2, . . . we will denote possibly different positive constants depending only
on the required quantities. Without loss of generality we may assume that � = B is
the unit ball in C

n and that u is defined in some neighborhood of B̄. We will use the
notation u j = uz j , u j̄ = uz̄ j and �u = ∑

j u j j̄ . As usual, by (ui j̄ ) we will denote
the inverse transposed of (ui j̄ ).
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We will first prove Theorem assuming that u is in C4. Differentiating (1) w.r.t. z p

and z̄ p we will get

ui j̄ ui j̄ p = (logψ)p

and

ui j̄ ui j̄ p p̄ = (logψ)p p̄ + uil̄uk j̄ ukl̄ p̄ui j̄ p.

Therefore

ui j̄ (�u)i j̄ ≥ �(logψ). (4)

We will now use an idea from [12]. For some α, β ≥ 2 to be determined later set

w := η(�u)α,

where

η(z) := (1 − |z|2)β

Then

wi = ηi (�u)α + αη(�u)α−1(�u)i

and

ui j̄wi j̄ = αη(�u)α−1ui j̄ (�u)i j̄ + α(α − 1)η(�u)α−2ui j̄ (�u)i (�u) j̄

+ 2α(�u)α−1Re
(

ui j̄ηi (�u) j̄

)
+ (�u)αui j̄ηi j̄ .

By (4) and the Schwarz inequality for t > 0

ui j̄wi j̄ ≥ αη(�u)α−1�(logψ)+ α(α − 1)η(�u)α−2ui j̄ (�u)i (�u) j̄

− tα(�u)α−1ui j̄ (�u)i (�u) j̄ − 1

t
α(�u)α−1ui j̄ηiη j̄ + (�u)αui j̄ηi j̄ .

Therefore with t = (α − 1)η/�u we get

ui j̄wi j̄ ≥ αη(�u)α−1�(logψ)+ (�u)αui j̄
(
ηi j̄ − α

α − 1

ηiη j̄

η

)
.

We now have

ηi = −βziη
1−1/β

ηi j̄ = −βδi j̄η
1−1/β + β(β − 1)z̄i z jη

1−2/β
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and thus
∣∣
∣ηi j̄

∣∣
∣ ,

∣∣∣
∣
ηiη j̄

η

∣∣∣
∣ ≤ C(β)η1−2/β .

We will get

ui j̄wi j̄ ≥ −C1(�u)α−1 − C2w
1−2/β(�u)2α/β

∑

i, j

|ui j̄ |.

Fix q with 1 < q < p/(n(n − 1)). Since ||�u||p (this way we will denote norms

in L p(B)) is under control, it follows that ||ui j̄ ||p and ||ui j̄ ||p/(n−1) are as well. It
follows that for

α = 1 + p

qn
, β = 2

(
1 + qn

p

)

we have
∥∥∥∥
(

ui j̄wi j̄

)

−

∥∥∥∥
qn

≤ C3

(

1 +
(

sup
B
w

)1−2/β
)

,

where f− := − min( f, 0).
By [2] we can find continuous plurisubharmonic v vanishing on ∂B and such that

det(vi j̄ ) =
((

ui j̄wi j̄

)

−

)n

(weakly). Essentially by an inequality between arithmetic and geometric means (see
[3] how to extend it to the weak case) we have

ui j̄vi j̄ ≥ n
(

det
(

ui j̄
))1/n (

det
(
vi j̄

))1/n

= nψ−1/n
(

ui j̄wi j̄

)

−

≥ − 1

C4
ui j̄wi j̄ .

It follows that w ≤ −C4v and by Kołodziej’s inequality (3)

sup
B
w ≤ C5|| det(vi j̄ )||1/n

q

= C5||
(

ui j̄wi j̄

)

− ||qn

≤ C6

(

1 +
(

sup
B
w

)1−2/β
)

.

Therefore w ≤ C7 and the desired estimate follows if u ∈ C4.
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Now assume that the solution is just in W 2,p. Similarly to [2], instead of �u we
will consider for ε > 0 the following approximations to the Laplacian

T = Tεu = n + 1

ε2 (uε − u),

where

uε(z) = 1

λ(B(z, ε))

∫

B(z,ε)

u dλ

and λ denotes the Lebesgue measure in C
n . Since Tεu → �u weakly as ε → 0, it is

enough to show a uniform upper bound for T independent of ε.
By [2] we have

ui j̄ uε,i j̄ ≥ nψ−1/n
(

det(uε,i j̄ )
)1/n ≥ nψ−1/n(ψ1/n)ε

and thus, coupling this with ui j̄ ui j̄ = n, we obtain the following counterpart of (4)

ui j̄ Ti j̄ ≥ nψ−1/nTε(ψ
1/n) ≥ −C8.

Changing the definition of w to ηT α (since u is plurisubharmonic, T is nonnegative,
hence T α is well defined) and repeating the previous computations we will get

ui j̄wi j̄ ≥ C9T α−1 − C10w
1−2/βT 2α/β

∑

i, j

∣∣∣ui j̄
∣∣∣ .

The rest of the proof is now the same as before.

Acknowledgments Part of the research was done while the second named author was visiting the Prince-
ton University. He would like to thank this institution for the perfect working conditions and hospitality
and especially professor Gang Tian for his encouragement and help.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Bedford, E.: Survey of pluri-potential theory. In: Fornæss, J.E. (ed.) Several Complex Variables. Pro-
ceedings of the Mittag-Leffler Institute, vol. 1987–1988. Princeton University Press, New Jersy (1993)

2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent.
Math. 37, 1–44 (1976)

3. Błocki, Z.: The complex Monge–Ampère operator in hyperconvex domains. Ann. Scuola Norm. Sup.
Pisa 23, 721–747 (1996)

4. Błocki, Z.: On the regularity of the complex Monge–Ampère operator. In: Complex Geometric Analysis
in Pohang, 1997. Contemp. Math., vol. 222, pp. 181–189. Amer. Math. Soc., Providence (1999)

123



416 Z. Błocki, S. Dinew

5. Błocki, Z.: Interior regularity of the complex Monge–Ampère equation in convex domains. Duke Math.
J. 105, 167–181 (2000)

6. Cegrell, U., Persson, L.: The Dirichlet problem for the complex Monge–Ampère operator: stability in
L2. Michigan Math. J. 39, 145–151 (1992)

7. He, W.: On regularity of complex Monge–Ampère equations. arXiv:1002.4825v2
8. Kołodziej, S.: Some sufficient conditions for solvability of the Dirichlet problem for the complex

Monge–Ampère operator. Ann. Pol. Math. 65, 11–21 (1996)
9. Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180, 69–117 (1998)

10. Pogorelov, A.V.: The Dirichlet problem for the multidimensional analogue of the Monge–Ampère
equation. Dokl. Akad. Nauk SSSR 201, 790–793 (1971) [transl.: Soviet Math. Dokl. 12, 1727–1731
(1971)]

11. Siu, Y.-T.: Lectures on Hermitian–Einstein metrics for stable bundles and Kähler–Einstein metrics.
Birkhäuser, Basel (1987)

12. Trudinger, N.S.: Local estimates for subsolutions and supersolutions of general second order elliptic
quasilinear equations. Invent. Math. 61, 67–79 (1980)

13. Trudinger, N.S.: Regularity of solutions of fully nonlinear elliptic equations. Boll. Un. Mat. Ital.
A (6) 3, 421–430 (1984)

14. Urbas, J.: Regularity of generalized solutions of Monge–Ampère equations. Math. Z. 197, 365–
393 (1988)

123


	A local regularity of the complex Monge--Ampère equation
	Abstract
	1 Introduction
	2 Proof of Theorem
	Acknowledgments
	References


