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On the complex Monge–Ampère operator for
quasi-plurisubharmonic functions with analytic singularities

Zbigniew B�locki

Abstract

We give a modified, very natural definition for the complex Monge–Ampère operator for an
ω-plurisubharmonic (psh) function ϕ with analytic singularities on a Kähler manifold (X,ω)
of dimension n which has the property

∫
X

(ω + ddcϕ)n =
∫
X
ωn if X is compact. This means

that, unlike in the previous definition, no mass is lost here. In fact, the definition works for
any smooth (1,1)-form ω (we need neither closedness nor positivity) and quasi-psh ϕ with
analytic singularities.

1. Introduction

A plurisubharmonic (psh) function u defined on a complex manifold X of dimension n is said
to have analytic singularities if locally it can be written in the form

u = c log |F | + v,

where c � 0 is a constant, F = (f1, . . . , fm) is a tuple of holomorphic functions which does not
vanish everywhere, and v is bounded. By Z we will denote the singular set of u, that is the
analytic variety in X where u = −∞. If m = 1 then we say that u has divisorial singularities.
In this case v has to be a bounded psh function.

For a psh u with analytic singularities and k = 2, . . . , n Andersson–Wulcan [2] inductively
defined the complex Monge–Ampère operator as follows:

(ddcu)k := ddc
(
u1X\Z(ddcu)k−1

)
.

In order for this definition to work one has to show two things: first that Tk−1 := 1X\Z(ddcu)k−1

extends across Z as a closed current on X and second that uTk−1 has locally finite mass near
Z. If u = log |f | + v has divisorial singularities then

(ddcu)k = ddcu ∧ (ddcv)k−1 = [f = 0] ∧ (ddcv)k−1 + (ddcv)k,

where [f = 0] = ddc(log |f |) is the current of integration along {f = 0}.
As long as Z is not discrete, it follows in particular that ∇u /∈ L2

loc, and then u /∈ D where
D is a domain of definition of the complex Monge–Ampère equation defined in [4, 5]. It is
a maximal subclass of the class of psh functions where one can define the complex Monge–
Ampère operator in such a way that it is continuous (in the weak∗ topology of currents) for
decreasing sequences. Therefore, we cannot expect that this operator will be continuous for
smooth regularizations of psh functions with analytic singularities. In fact, for

u(z) := log |z1 · · · zn|, z ∈ C
n,

one has (ddcu)n = 0 but (ddcuj)n → cnδ0 for some cn > 0, where uj = u ∗ ρ1/j are the standard
regularizations of u by convolution (see [6]).
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Recently in [1] it was shown however that this definition of the complex Monge–Ampère
operator is continuous for special regularizations, namely if u is approximated by a sequence
of the form χj ◦ u, where χ′

j � 0, χ′′
j � 0. Perhaps the most obvious choice would be χj(t) =

max{t,−j}. This result can be treated as an alternative definition of (ddcu)k.
If ω is a Kähler form and ϕ is an ω-psh function with analytic singularities then (ω + ddcϕ)k

was defined in [1] as (ddc(g + ϕ))k, where g is a local potential for ω (that is ω = ddcg). There
are two problems with this definition. First of all, if X is compact then∫

X

(ω + ddcϕ)n �
∫
X

ωn (1)

but it may happen that one has a strict inequality here, that is, some mass is lost in the process.
For example, if X = P

n is the projective space with the Fubini-Study metric ω and

ϕ([Z]) = log
|z1|
|Z| , Z = (z0, z1, . . . , zn) ∈ C

n+1 \ {0}. (2)

then (ω + ddcϕ)n = 0 on P
n (provided that n � 2). The second problem with this definition is

that it does not work if ω is not closed.
The aim of this paper is to propose a modified, probably more natural definition of the

Monge–Ampère operator (ω + ddcϕ)k for which we will have equality in (1). Another advantage
is that it will also work in the Hermitian, not necessarily Kähler setting. The idea is to consider,
instead of local approximations of the form χj ◦ u, where u = g + ϕ, the global ones χj ◦ϕ. (If
we assume in addition that χ′

j � 1 then χj ◦ ϕ is ω-psh.) For χj(t) = max{t,−j} this means
that instead of approximating u by max{u,−j} we do it by max{u, g − j}. This also shows
how, for a local psh function u with analytic singularities, we can differently define the Monge–
Ampère operator (ddcu)k relatively to a strongly psh g.

In fact, positivity of ω is not essential. It is also convenient to assume that ϕ is quasi-psh,
that is locally can be written as ϕ = u + ψ, where u is psh and ψ is smooth. We say that ϕ
has analytic singularities if u does.

Our main result is the following.

Theorem 1. Let ϕ be a negative quasi-psh function with analytic singularities on a complex
manifold X of dimension n and assume that η is a smooth (1,1)-form on X. Then for k =
1, . . . , n the current (η + ddcϕ)k can be uniquely defined in such a way that if χj is a sequence
of bounded nondecreasing convex functions on (−∞, 0] such that χj(t) decreases to t as j
increases to ∞ then

(η + ddc(χj ◦ ϕ))k −→ (η + ddcϕ)k

weakly as j → ∞.

This definition immediately gives

Corollary 2. Assume that ϕ is an ω-psh function with analytic singularities on a compact
Kähler manifold (X,ω). Then ∫

X

(ω + ddcϕ)n =
∫
X

ωn.

This might potentially be useful to some ω-psh functions appearing naturally in complex
geometry, see, for example, [8].
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The operator defined in Theorem 1 comes from the expansion

(η + ddcϕ)k =
k∑

l=1

(
k

l

)
(ddcϕ)l ∧ ηk−l (3)

which reduces the proof to the case η = 0, that is, a generalization of [1, Theorem 1.1] from
psh to quasi-psh functions. In fact, then the definition from [2] works as well:

(ddcϕ)k := ddc
(
ϕ1X\Z(ddcϕ)k−1

)
. (4)

If we use (3) and (4) for the function given by (2) then for k � 1

(ddcϕ)k = (−1)kddcϕ ∧ ωk−1

and

(ω + ddcϕ)k = (ω + ddcϕ) ∧ ωk−1 = [z1 = 0] ∧ ωk−1.

The difference between these two definitions of the complex Monge–Ampère operator with
respect to a Kähler form comes from the fact that if ϕ is quasi-psh with analytic singularities
and ψ is smooth then (ddc(ϕ + ψ))k is in general not equal to the corresponding binomial
expansion. This is exploited in the next result.

Theorem 3. Assume that ϕ is a quasi-psh function with analytic singularities on a complex
manifold X with singular set Z. Then for any smooth ψ and k = 1, . . . , n one has

(ddc(ϕ + ψ))k =
k∑

l=0

(
k

l

)
(ddcϕ)l ∧ (ddcψ)k−l − 1Z

k−1∑
l=1

(
k − 1
l

)
(ddcϕ)l ∧ (ddcψ)k−l

=
k∑

l=0

(
k

l

)
(ddcϕ)l ∧ (ddcψ)k−l − 1Z

k−1∑
l=1

(ddc(ϕ + ψ))l ∧ (ddcψ)k−l.

(5)

Note that [1, Theorem 1.2] is an immediate consequence of the second equality in (5), (3) and
Corollary 2. It is also clear that this is the same measure as the one defined in [7, Remark 3.7].

One should note that the current (η + ddcϕ)k in Theorem 1 does not really depend on the
(1,1)-form η + ddcϕ but on both η and ϕ. This is clear from Theorem 3 if we take, for example,
η = ddcψ. Therefore (η + ddcϕ)k should be viewed as the operator acting on ϕ and depending
on η.

2. Proofs

Proof of Theorem 1. By (3) we may assume that η = 0. The proof will now be similar to that
of [1, Theorem 1.2]. Shrinking X if necessary, we may write ϕ = u + ψ where u = c log |F | + v
is psh with analytic singularities and ψ is smooth. By resolution of singularities there exists a
complex manifold X ′ and a proper holomorphic mapping π : X ′ → X such that the exceptional
divisor E := π−1Z is a hypersurface in X ′ and π|X′\E → X \ Z is a biholomorphism. We then
locally have π∗F = f0F

′, where f0 is a holomorphic function such that E = {f0 = 0} and F ′

is a nonvanishing tuple of holomorphic functions. Then

π∗ϕ = log |f0| + log |F ′| + π∗v + π∗ψ

has divisorial singularities. Since

(ddc(χj ◦ ϕ))k = π∗(ddc(χj ◦ π∗ϕ))k



434 ZBIGNIEW B�LOCKI

and since

π∗(ddcπ∗ϕ)k = (ddcϕ)k,

where we use (4) (see [1, 2]), it follows that it is enough to prove the theorem when ϕ has
divisorial singularities.

We may then write

ϕ = c log |f | + v + ψ,

where f is holomorphic, v is bounded psh, and ψ is smooth. First, consider the case when χj

are smooth. Then on {f 	= 0}
(ddc(χj ◦ ϕ))k =

(
χ′′
j ◦ ϕdϕ ∧ dcϕ + χ′

j ◦ ϕddcϕ
)k

=
(
kχ′′

j ◦ ϕdϕ ∧ dcϕ + χ′
j ◦ ϕddcϕ

) ∧ (χ′ ◦ ϕddcϕ)k−1

= d
(
(χ′

j ◦ ϕ)kdcϕ
) ∧ (ddcϕ)k−1

= ddc(γj ◦ ϕ) ∧ (ddc(v + ψ))k−1

= ddc
(
γj ◦ ϕ (ddc(v + ψ))k−1

)
,

where γj is a uniquely determined convex function on (−∞, 0] satisfying γj(−1) = χj(−1) and
γ′
j = (χ′

j)
k. Then it is also bounded nondecreasing (in t) and γj(t) decreases to t as j → ∞.

(Similar argument was used in [3].) Since

ddc(γj ◦ ϕ) � γ′
j ◦ ϕddcψ

and 0 � χ′
j � C on (−∞,−ε] (where ϕ � −ε), it follows that locally we may write γj ◦ ϕ =

uj + ψ̃, where uj is psh and ψ̃ is smooth (and independent of j). Using [1, Theorem 2.1] we
now get that

(ddc(χj ◦ ϕ))k −→ ddcϕ ∧ (ddc(v + ψ))k−1

weakly as j → ∞ when χj are smooth. Approximating arbitrary functions χj by smooth ones
we can get rid of this assumption. �

Proof of Theorem 3. With the notation η = ddcψ we have

(ddc(ϕ + ψ))k = ddc
(
(ϕ + ψ)1X\Z(ddc(ϕ + ψ))k−1

)
= ddc

(
ϕ1X\Z

k−1∑
l=0

(
k − 1
l

)
(ddcϕ)k−1−l ∧ ηl

)
+ 1X\Z(ddc(ϕ + ψ))k−1 ∧ η

=
k−1∑
l=0

(
k − 1
l

)
(ddcϕ)k−l ∧ ηl + 1X\Z

k−1∑
l=0

(
k − 1
l

)
(ddcϕ)l ∧ ηk−l.

Since (
k − 1
k − l

)
+
(
k − 1
l

)
=

(
k

l

)
,

the first equality follows. We have also obtained that

(ddc(ϕ + ψ))k =
k∑

l=1

(
k − 1
k − l

)
(ddcϕ)l ∧ ηk−l + 1X\Z(ddc(ϕ + ψ))k−1 ∧ η.
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Continuing this way we will get

(ddc(ϕ + ψ))k =
k∑

l=0

al(ddcϕ)l ∧ ηk−l − 1Z

k−1∑
l=1

(ddc(ϕ + ψ))l ∧ (ddcψ)k−l

for some al independent of ϕ and ψ. Since it also holds for nonsingular case, it is clear that
al =

(
k
l

)
and the second equality in Theorem 3 follows. �
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