Uzbek Mathematical Journal, 2009,№1, pp.28-32

A note on maximal plurisubharmonic functions Zbigniew Blocki

Maqolada maksimal plyurisubgarmonik funksiyaning chegaralanmaganligi lokal xossa boʻladimi? Biz quyidagi taxminni inkor qilamiz: agar u maksimal plyurisubgarmonik funksiya boʻlsa u xolda j soni 1 ga intilganda (ddcmaxu, -j)n ifoda 0 ga kuchsiz yaqinlashadi.

Мы обсуждаем проблему: является ли неограниченность максимальной плюрисубгармонической функции локальным свойством. Мы опровергаем следующее предположение: если и является максимальной плюрисубгармонической функцией, то (ddcmaxu, -j)n сходится слабо к 0, когда ј стремится к 1.

Introduction

The notion of maximality for plurisubharmonic functions was introduced by Sadullaev in [9]: a plurisubharmonic function u in a domain Ω in \mathbb{C}^n is called maximal if for any other plurisubharmonic function v in Ω satisfying $v \leq u$ outside a compact subset of Ω one has $v \leq u$ in Ω . For n = 1 maximal functions are precisely the harmonic ones. One of the main result of the Bedford-Taylor theory of the complex Monge-Ampère operator [1]-[2] is the following characterization:

Theorem 1 A locally bounded plurisubharmonic function u is maximal if and only if $(dd^c u)^n = 0$.

The *if* part follows from the comparison principle [2], whereas the *only* if part is a consequence of the solution of the Dirichlet problem [1].

Theorem 1 immediately gives

Corollary 1 Maximality is a local notion for locally bounded plurisubharmonic functions.

The domain of definition D of the complex Monge-Ampère operator is the biggest subclass of the class of plurisubharmonic functions where the operator can be (uniquely) extended from the class of smooth plurisubharmonic functions (as a regular measure) so that it is continuous for decreasing sequences. It was characterized in [4]-[5], for example for n=2 we have $D=PSH\cap W_{loc}^{1,2}$. It turns out that the class D coincides with the class E introduced by Cegrell [7].

One can generalize Theorem 1 as follows (see [4]):

Theorem 2 A function $u \in D$ is maximal if and only if $(dd^c u)^n = 0$. **Corollary 2** Maximality is a local notion for functions from the class D.

The proof of Theorem 2 is similar to that of Theorem 1, the extra result one uses is the following theorem of Sadullaev [9] (see also [3]):

Theorem 3 If u_j is a sequence of locally bounded plurisubharmonic functions decreasing to a plurisubharmonic function u such that $(dd^c u_j)^n$ tends weakly to 0, then u is maximal.

A natural question arises whether a converse is true. It turns out that the answer is no, as the following example of Cegrell [6] shows: $\log |zw|$ is a maximal plurisubharmonic function in \mathbb{C}^2 (in fact every function of the form $\log |F|$, where F is holomorphic, is maximal in dimension $n \geq 2$) but if we consider for example the sequence

$$u_j := \frac{1}{2}\log(|z|^2 + 1/j) + \frac{1}{2}\log(|w|^2 + 1/j)$$

then one can show that $(dd^c u_j)^2$ tends weakly to $2^7 \pi^2 \delta_0$ (δ_0 denotes the point mass at the origin).

The open problem remains whether maximality is a local notion, without any additional assumption. A positive answer to the following conjecture would solve this problem:

$$u \text{ maximal } \Rightarrow (dd^c \max\{u, -j\})^n \text{ tends weakly to } 0 \text{ as } j \to \infty.$$

The main goal of this note is to give a counterexample to this conjecture.

Example

In the unit bidisk Δ^2 set

$$u(z, w) := -\sqrt{\log|z| \log|w|}, \quad |z| < 1, \ |w| < 1.1$$

Then u is plurisubharmonic in Δ^2 . We claim that u is maximal in $\Delta^2 \setminus \{(0,0)\}$. Indeed, it follows easily from the fact that u is harmonic on the punctured disks

$$\Delta_* \ni \zeta \longmapsto (\zeta^n, \lambda \zeta^m) \in \Delta^2,$$

where $|\lambda|=1,\,n,m=1,2,\ldots$ (and from the continuity of u away from the axis).

On the other hand, note that u is not maximal in Δ^2 : the function

$$v(z,w) :=$$

 $-\sqrt{-\log|z|-\log|w|+1}$ $|z| \le 1/e$, $|w| \le 1/e - \sqrt{\log|z|\log|w|}$ otherwise is plurisubharmonic in Δ^2 but $\{u < v\} = \{|z| < 1/e, |w| < 1/e\}$ (note that v is maximal there).

We will need a lemma:

LemmaSet

$$L: (\mathbb{C}_*)^n \ni (z_1, \dots, z_n) \longmapsto (\log |z_1|, \dots, \log |z_n|) \in \mathbb{R}^n.$$

Assume that γ is a convex function defined on an open convex subset D of \mathbb{R}^n . Then for a Borel subset E of D we have

$$\int_{L^{-1}(E)} (dd^c(\gamma \circ L))^n = n!(2\pi)^n vol(N_{\gamma}(E)),$$

where

$$N_{\gamma}(E) = \bigcup_{x^0 \in E} \{ y \in \mathbb{R}^n : \langle x - x^0, y \rangle + \gamma(x^0) \le \gamma(x), \ x \in D \}$$

is the gradient image of γ on E.

Proof We have

$$(dd^{c}(\gamma \circ L))^{n} = \frac{n!}{|z_{1}|^{2} \dots |z_{n}|^{2}} L^{*}(M\gamma),$$

where M is the real Monge-Ampère operator $(M\gamma = \det D^2\gamma)$ for smooth γ and it is a regular measure for general convex γ). Therefore

$$\int_{L^{-1}(E)} (dd^c(\gamma \circ L))^n = n! \int_{\exp E} \frac{1}{r_1^2 \dots r_n^2} \widetilde{L}^*(M\gamma),$$

where

$$\exp E = \{ (e^{x_1}, \dots, e^{x_n}) : (x_1, \dots, x_n) \in E \}$$

and

$$\widetilde{L}: (\mathbb{R}_+)^n \ni (r_1, \dots, r_n) \longmapsto (\log r_1, \dots, \log r_n) \in \mathbb{R}^n.$$

The lemma now follows after a polar change of coordinates and since

$$\int_{E} M\gamma = vol(N_{\gamma}(E))$$

(see e.g. [8]).

We will now apply the lemma to the function

$$\gamma_j(x, y) = \max\{-\sqrt{xy}, -j\}, \quad x, y \in \mathbb{R}_-,$$

and the set

$$E := \{ \log a \le x \le \log b \},\$$

where 0 < a < b < 1. One can then easily check that

$$N_{\gamma_j}(E) = \{(s,t) \in \mathbb{R}^2 : st \le \frac{1}{4}, \ \frac{\log^2 b}{j^2} s \le t \le \frac{\log^2 a}{j^2} s\}$$

and

$$vol(N_{\gamma_j}(E)) = \frac{1}{4} \log \frac{\log a}{\log b}.$$

Therefore, for u given by (1) and $u_i := \max\{u, -j\}$ we get

$$\int_{\{a \le |z| \le b\}} (dd^c u_j)^2 = 2\pi^2 \log \frac{\log a}{\log b}.$$

Since the measures $(dd^c u_j)^2$ are supported on the set $\{u = -j\}$, it follows that on $\Delta^2 \setminus \{(0,0)\}$ they weakly tend to the measure supported on $(\Delta_* \times \{0\}) \cup (\{0\} \times \Delta_*)$. For example on $\Delta_* \times \{0\}$ it is given by

$$\frac{\pi}{-|z|^2 \log |z|} d\lambda,$$

where $d\lambda$ is the Lebesgue measure on \mathbb{C} (and similarly on $\{0\} \times \Delta_*$).

References

- [1] E.Bedford, B.A.Taylor, The Dirichlet problem for a complex Monge-Amp'ere equation Invent., Math. vol 37 1976 pages 1-44
- [2] E.Bedford, B.A.Taylor, A new capacity for plurisubharmonic functions Acta Math. vol 149 1982 pages 1-41
- [3] Z.Blocki, Estimates for the complex Monge-Ampère operator Bull. Pol. Acad. Sci. vol 41 1993 pages 151-157
- [4] Z.Blocki, On the definition of the Monge-Ampère operator in \mathbb{C}^2 Math. Ann. vol 328 2004 pages 415-423
- [5] Z.Blocki, The domain of definition of the complex Monge-Ampère operator Amer. J. Math. vol 128 2006 pages 519-530
- [7] U.Cegrell, Sums of continuous plurisubharmonic functions and the complex Monge-Ampère operator in \mathbb{C}^n Math. Z. vol 193 1986 pages 373-380
- [8] U.Cegrell, The general definition of the complex Monge-Ampère operator Ann. Inst. Fourier vol 54 2004 pages 159-179

- [9] J.Rauch, B.A.Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation Rocky Mountain Math. J. vol 7 1977 pages 345-364
- [10] A.Sadullaev, Plurisubharmonic measures and capacities on complex manifolds Russian Math. Surveys vol 36 1981 61-119

University of Jagielloski, Krakow