Analysis Meets Geometry: A Tribute to Mikael Passare Trends in Mathematics, 127–133 © 2017 Springer International Publishing

Suita Conjecture from the One-dimensional Viewpoint

Zbigniew Błocki

Dedicated to the memory of Mikael Passare

Abstract. The Suita conjecture predicted the optimal lower bound for the Bergman kernel of a domain on the plane in terms of logarithmic capacity. It was recently proved as a special case of the optimal version of the Ohsawa–Takegoshi extension theorem. We present here a purely one-dimensional approach that should be suited to readers not interested in several complex variables.

Introduction

For a domain Ω in \mathbb{C} by $A^2(\Omega)$ we denote the space of holomorphic square integrable functions in Ω . The Bergman kernel K_{Ω} is defined by the reproducing property

$$f(w) = \int_{\Omega} f \overline{K_{\Omega}(\cdot, w)} d\lambda, \quad f \in A^{2}(\Omega), \ w \in \Omega.$$

On the diagonal we have

$$K_{\Omega}(w,w) = ||K_{\Omega}(\cdot,w)||^{2} = \sup\{|f(w)|^{2} \colon f \in A^{2}(\Omega), \ ||f|| \le 1\}$$

where $|| \cdot ||$ denotes the L^2 -norm. Suita [17] conjectured that

$$c_{\Omega}(w)^2 \le \pi K_{\Omega}(w, w) \tag{1}$$

where

$$c_{\Omega}(w) = \exp \lim_{z \to w} (G_{\Omega}(z, w) - \log |z - w|)$$

is the logarithmic capacity of the complement of Ω with respect to w. Here G_{Ω} is the Green function, it is the maximal negative function such that $G_{\Omega}(\cdot, w) - \log |\cdot -w|$ is harmonic in Ω (or $\equiv -\infty$).

Partially supported by the Ideas Plus grant 0001/ID3/2014/63 of the Polish Ministry of Science and Higher Education.

Z. Błocki

Ohsawa [15] was the first to notice that the right approach is to treat it an L^2 -extension problem: one has to construct holomorphic f in Ω such that f(w) = 1 and $||f||^2 \leq \pi/c_{\Omega}(w)^2$. Using the methods of the original proof of the Ohsawa–Takegoshi extension theorem [16] he managed to show the estimate

$$c_{\Omega}(w)^2 \le C\pi K_{\Omega}(w,w)$$

with C = 750. This was improved to C = 2 in [3] and to C = 1.95388... by Guan–Zhou–Zhu [11] who proved the extension theorem with this constant using an ODE with one unknown (see also [4]).

The estimate with C = 1 was established in [5] where also the optimal version of the Ohsawa–Takegoshi theorem was obtained. The main tool was the Hörmander L^2 -estimate [12] for the $\bar{\partial}$ -equation as well as some ideas of Chen [8] who was the first to show that the extension theorem (without an optimal constant) can be deduced directly from this estimate. One of the key steps was a solution of an ODE with two unknowns. Guan–Zhou [9, 10] later proved some generalizations of the extension theorem with optimal constant but similarly as in [5] the key was essentially the same ODE with two unknowns.

Two other proofs of the Suita conjecture were found afterwards. Both of them gave the estimate

$$K_{\Omega}(w,w) \ge \frac{1}{e^{-2t}\lambda(\{G_{\Omega}(\cdot,w) < t\})},\tag{2}$$

where $t \leq 0$, from which (1) easily follows when $t \to -\infty$. The first from [6] used the tensor-power trick and thus effectively needed an arbitrarily high dimension in order to obtain this one-dimensional result. The second was due to Lempert [13] who noticed that (2) can be deduced from subharmonicity property of the Bergman kernel for sections of a pseudoconvex domain in \mathbb{C}^2 , see [14] and [2]. This way one had to use two dimensions to get the Suita conjecture. One can add that it was shown in [7] using the isoperimetric inequality that the right-hand side of (2) is monotone in t.

Using some ideas of Berndtsson [1] and essentially following the approach of Guan–Zhou [9] we will give a self-contained one-dimensional proof of the Suita conjecture (1). We will obtain the same ODE as in [5]. It would be interesting to find such a one-dimensional proof of (2). As a by-product in Section 2 we present a new formula for the Bergman kernel on the diagonal as an extremal for a family of test functions.

The author is grateful to Bo Berndtsson for finding an error in the first version of the paper.

1. Proof of the Suita conjecture

It is well known that the Bergman kernel, Green function and logarithmic capacity converge locally uniformly as Ω_j is an increasing sequence of domains whose union is Ω . Without loss of generality we may therefore assume that Ω is bounded and has smooth boundary. We will use the notation

$$\partial = \frac{\partial}{\partial z}, \quad \bar{\partial} = \frac{\partial}{\partial \bar{z}}.$$

The following description of the Bergman kernel as a solution of the Dirichlet problem is well known, we present the proof for the sake of completeness:

Proposition 1. For $w \in \Omega$ where Ω is a bounded domain in \mathbb{C} with C^1 boundary, let v be the complex-valued harmonic function in Ω such that $v(z) = 1/(\pi(z-w))$ for $z \in \partial \Omega$. Then $K_{\Omega}(\cdot, w) = \partial v$.

Proof. It is clear that ∂v is holomorphic and we have to show that the reproducing formula is satisfied. Take $f \in A^2(\Omega)$, by the approximating property we may assume that f is defined in a neighbourhood of $\overline{\Omega}$. By the Cauchy–Green formula

$$f(w) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(z)}{z - w} dz = -\frac{i}{2} \int_{\partial\Omega} f \bar{v} dz = \int_{\Omega} f \overline{\partial v} d\lambda$$

and the result follows.

For a real-valued $\varphi \in C^1(\Omega)$ we consider the weighted scalar product

$$\langle \alpha, \beta \rangle_{\varphi} = \int_{\Omega} \alpha \bar{\beta} e^{-\varphi} d\lambda$$

and the adjoint operator

$$\bar{\partial}_{\varphi}^{*}\alpha = -e^{\varphi}\partial(\alpha e^{-\varphi}) = -\partial\alpha + \alpha\partial\varphi,$$

so that

$$\langle \bar{\partial}_{\varphi}^* \alpha, \beta \rangle_{\varphi} = \langle \alpha, \bar{\partial} \beta \rangle_{\varphi},$$

provided that $\varphi, \alpha, \beta \in C^1(\overline{\Omega})$ are such that on $\partial \Omega$ either $\alpha = 0$ or $\beta = 0$. We have

$$\bar{\partial}\bar{\partial}_{\varphi}^{*}\alpha = \bar{\partial}_{\varphi}^{*}\bar{\partial}\alpha + \alpha\partial\bar{\partial}\varphi. \tag{3}$$

To prove (1) assume for simplicity that w = 0 and set

$$\alpha := e^{\varphi} (1 - \pi \bar{z} v), \tag{4}$$

where v is as in Proposition 1 and φ will be determined later. We have $\alpha = 0$ on $\partial\Omega$, $\alpha(0) = e^{\varphi(0)}$ and

$$\bar{\partial}_{\varphi}^* \alpha = \pi \bar{z} K_{\Omega}(\cdot, 0) e^{\varphi}.$$

Then

$$K_{\Omega}(0,0) = \frac{1}{\pi^2} \int_{\Omega} |\bar{\partial}^*_{\varphi} \alpha|^2 \frac{e^{-2\varphi}}{|z|^2} d\lambda.$$
(5)

We will need the following:

Proposition 2. Assume that $\mu, \varphi \in C^2(\overline{\Omega})$ are real-valued and $\alpha \in C^1(\overline{\Omega})$ is such that $\alpha = 0$ on $\partial\Omega$. Then

$$\int_{\Omega} \mu |\bar{\partial}_{\varphi}^* \alpha|^2 e^{-\varphi} d\lambda = \int_{\Omega} \left[\mu |\bar{\partial}\alpha|^2 + |\alpha|^2 \left(\mu \partial \bar{\partial}\varphi - \partial \bar{\partial}\mu \right) + 2\Re \left(\bar{\alpha} \bar{\partial}\mu \, \bar{\partial}_{\varphi}^* \alpha \right) \right] e^{-\varphi} d\lambda.$$

Proof. We have

$$\langle \mu \bar{\partial}_{\varphi}^{*} \alpha, \bar{\partial}_{\varphi}^{*} \alpha \rangle_{\varphi} = \langle \bar{\partial} \mu \, \bar{\partial}_{\varphi}^{*} \alpha, \alpha \rangle_{\varphi} + \langle \mu \bar{\partial} \bar{\partial}_{\varphi}^{*} \alpha, \alpha \rangle_{\varphi}$$

and by (3)

$$\langle \mu \bar{\partial} \bar{\partial}_{\varphi}^* \alpha, \alpha \rangle_{\varphi} = \langle \bar{\partial}_{\varphi}^* \bar{\partial} \alpha, \mu \alpha \rangle_{\varphi} + \langle \alpha \partial \bar{\partial} \varphi, \mu \alpha \rangle_{\varphi}.$$

Further,

$$\langle \bar{\partial}_{\varphi}^* \bar{\partial} \alpha, \mu \alpha \rangle_{\varphi} = \langle \bar{\partial} \alpha, \mu \bar{\partial} \alpha \rangle_{\varphi} + \langle \bar{\partial} \alpha, \alpha \bar{\partial} \mu \rangle_{\varphi}$$

and

$$\langle \bar{\partial}\alpha, \alpha \bar{\partial}\mu \rangle_{\varphi} = \langle \alpha, \bar{\partial}\mu \bar{\partial}_{\varphi}^* \alpha \rangle_{\varphi} - \langle \alpha, \alpha \partial \bar{\partial}\mu \rangle_{\varphi}.$$

We obtain the following version of the Nakano inequality:

Corollary 3. Let α and φ be as in Proposition 2. Assume that both $\mu_1 \in C^2(\Omega)$ and integrable μ_2 are positive. Then

$$\int_{\Omega} (\mu_1 + \mu_2) |\bar{\partial}_{\varphi}^* \alpha|^2 e^{-\varphi} d\lambda \ge \int_{\Omega} |\alpha|^2 \left(\mu_1 \partial \bar{\partial} \varphi - \partial \bar{\partial} \mu_1 - \frac{|\partial \mu_1|^2}{\mu_2} \right) e^{-\varphi} d\lambda.$$

Proof. By Proposition 2 and the Cauchy–Schwarz inequality

$$\int_{\Omega} \mu_1 |\bar{\partial}_{\varphi}^* \alpha|^2 e^{-\varphi} d\lambda \ge \int_{\Omega} \left[|\alpha|^2 \left(\mu_1 \partial \bar{\partial} \varphi - \partial \bar{\partial} \mu_1 \right) - \frac{|\alpha \bar{\partial} \mu_1|^2}{\mu_2} - \mu_2 |\bar{\partial}_{\varphi}^* \alpha|^2 \right] e^{-\varphi} d\lambda. \quad \Box$$

By (5) we see that we should use Corollary 3 with $\mu_1 + \mu_2 = e^{-\varphi}/|z|^2$. Denote $G = G_{\Omega}(\cdot, 0)$ and set $\psi := 2G - \log |z|^2$, so that ψ is harmonic in Ω and $c_{\Omega}(0)^2 = e^{\psi(0)}$. We will look for

$$\varphi = \psi + \chi(-2G), \quad \mu_1 = e^{-\gamma(-2G)},$$

where $\chi(t)$ and $\gamma(t)$ defined for $t = -2G \ge 0$ will be determined later. Note that

$$\mu_2 = \frac{e^{-\varphi}}{|z|^2} - \mu_1 = e^{t-\chi} - e^{-\gamma}.$$

Using the fact that

$$\partial\bar{\partial}G = \frac{\pi}{2}\delta_0$$

we will obtain

$$\begin{split} \mu_1 \partial \bar{\partial} \varphi &- \partial \bar{\partial} \mu_1 - \frac{|\partial \mu_1|^2}{\mu_2} \\ &= -\pi (\chi' + \gamma') e^{-\gamma} \delta_0 + 4 \left(\chi'' + \gamma'' - \frac{(\gamma')^2}{1 - e^{\chi - \gamma - t}} \right) e^{-\gamma} |\partial G|^2 \\ &= -\pi \eta' e^{-\gamma} \delta_0 + 4 \left(\eta'' - \frac{(\gamma')^2}{1 - e^{\eta - 2\gamma - t}} \right) e^{-\gamma} |\partial G|^2, \end{split}$$

where $\eta = \chi + \gamma$. It is convenient to choose γ and η satisfying $-\eta' e^{-\gamma} = 1$ and

$$\eta'' - \frac{(\gamma')^2}{1 - e^{\eta - 2\gamma - t}} = 0$$

which is the same equation as in [5]. We can take the solutions obtained there:

$$\eta = -\log(t + e^{-t} - 1)$$

$$\gamma = -\log(t + e^{-t} - 1) + \log(1 - e^{-t}),$$

so that

$$\chi = -\log(1 - e^{-t})$$

and

$$\varphi = \psi - \log(1 - e^{2G}) = \psi - \log(1 - |z|^2 e^{\psi}).$$

By Corollary 3, since $\alpha(0) = e^{\varphi(0)} = c_{\Omega}(0)^2$,

$$\int_{\Omega} |\bar{\partial}_{\varphi}^* \alpha|^2 \frac{e^{-2\varphi}}{|z|^2} d\lambda \ge \pi c_{\Omega}(0)^2$$

and it is enough to use (5) to obtain (1). (Although we have used Corollary 3 for μ_1 which is not C^2 at the origin – in fact it is of the form $\mu_1 = -2G + \rho$ where ρ is smooth – by approximation it is clear that it holds also for such a function.)

2. A Formula for the Bergman kernel

Using similar methods as before we will prove the following result:

Theorem 4. For a domain Ω in \mathbb{C} and $w \in \Omega$ one has

$$K_{\Omega}(w,w) = \frac{1}{\pi^2} \inf \left\{ \int_{\Omega} \frac{|\partial \alpha(z)|^2}{|z-w|^2} d\lambda(z) \colon \alpha \in C_0^{\infty}(\Omega), \ \alpha(w) = 1 \right\}.$$
(6)

Proof. We may assume that w = 0. Take $\alpha \in C_0^{\infty}(\Omega)$ and $f \in A^2(\Omega)$ with $\alpha(0) = f(0) = 1$. Then $u := f/(\pi z)$ solves $\bar{\partial}u = \delta_0$ and

$$1 = |\alpha(0)|^2 = \left| \int_{\Omega} \bar{\alpha} \,\bar{\partial}u \right|^2 = \left| -\int_{\Omega} u \,\overline{\partial\alpha} \,d\lambda \right|^2 \le \frac{1}{\pi^2} ||f||^2 \int_{\Omega} \frac{|\partial\alpha|^2}{|z|^2} d\lambda.$$

This gives \leq in (6). To prove \geq we first assume that Ω is bounded and has smooth boundary. Let v be harmonic in Ω and such that $v = 1/(\pi \bar{z})$ on $\partial\Omega$. Then $\alpha := 1 - \pi \bar{z}v$ is smooth up to the boundary, vanishes there and $\alpha(0) = 1$. By Proposition 1 we have $\partial \alpha = -\pi \bar{z} K_{\Omega}(\cdot, 0)$ and it is enough to show that α can be well approximated by test forms. Let ρ be a defining function for Ω , so that $\Omega = \{\rho > 0\}$, and let $\chi \in C^{\infty}(\mathbb{R})$ be such that $\chi(t) = 0$ for $t \leq 1$ and $\chi(t) = 1$ for $t \geq 2$. One can easily show that for the test forms $\alpha_j := \chi(j\rho)\alpha$ one has

$$\int_{\Omega} \frac{|\partial \alpha_j|^2}{|z|^2} d\lambda \longrightarrow \int_{\Omega} \frac{|\partial \alpha|^2}{|z|^2} d\lambda$$

as $j \to \infty$. If Ω is arbitrary and $K_{\Omega}(0,0) < a$ then we can find $\Omega' \in \Omega$ with smooth boundary such that $K_{\Omega'}(0,0) < a$. By the previous part there exists $\alpha \in C_0^{\infty}(\Omega')$ such that $\alpha(0) = 1$ and

$$\frac{1}{\pi^2} \int_{\Omega'} \frac{|\partial \alpha|^2}{|z|^2} d\lambda < a.$$

This finishes the proof.

Similarly, for any $\varphi \in C^1(\Omega)$ one can show

$$K_{\Omega}(0,0) = \frac{1}{\pi^2} \inf \left\{ \int_{\Omega} |\bar{\partial}_{\varphi}^* \alpha|^2 \frac{e^{-2\varphi}}{|z|^2} d\lambda \colon \alpha \in C_0^{\infty}(\Omega), \ \alpha(0) = e^{\varphi(0)} \right\}$$

If Ω is bounded with smooth boundary and $\varphi \in C^1(\overline{\Omega})$ then instead of test forms we can take $\alpha \in C^1(\overline{\Omega})$ with $\alpha = 0$ on $\partial\Omega$ and α given by (4) realizes the infimum.

References

- B. BERNDTSSON, Integral formulas and the Ohsawa-Takegoshi extension theorem, Science in China Ser. A Math. 48 suppl. (2005), 61–73
- B. BERNDTSSON, Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier 56 (2006), 1633– 1662
- [3] Z. BLOCKI, Some estimates for the Bergman kernel and metric in terms of logarithmic capacity, Nagoya Math. J. 185 (2007), 143–150
- [4] Z. BLOCKI, On the Ohsawa-Takegoshi extension theorem, Univ. Iag. Acta Math. 50 (2012), 53-61
- [5] Z. BLOCKI, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), 149–158
- [6] Z. BLOCKI, A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 2011–2013, eds. B. Klartag, E. Milman, Lect. Notes in Math. 2116, pp. 53–63, Springer, 2014
- [7] Z. BLOCKI, W. ZWONEK, Estimates for the Bergman kernel and the multidimensional Suita conjecture, New York J. Math. 21 (2015) 151–161
- [8] B.-Y. CHEN, A simple proof of the Ohsawa-Takegoshi extension theorem, arXiv: 1105.2430
- Q. A. GUAN, X. Y. ZHOU, Optimal constant problem in the L² extension theorem, C. R. Acad. Sci. Paris, Ser. I 350 (2012) 753–756
- [10] Q. A. GUAN, X. Y. ZHOU, A solution of an L² extension problem with optimal estimate and applications, Ann. of Math. 181 (2015), 1139–1208
- [11] Q. A. GUAN, X. Y. ZHOU, L. F. ZHU, On the Ohsawa-Takegoshi L² extension theorem and the Bochner-Kodaira identity with non-smooth twist factor, J. Math. Pures Appl. 97 (2012), 579–601
- [12] L. HÖRMANDER, L^2 estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89–152
- [13] L. LEMPERT, private communication, October 2013
- [14] F. MAITANI, H. YAMAGUCHI, Variation of Bergman metrics on Riemann surfaces, Math. Ann, 330 (2004), 477–489

- [15] T. OHSAWA, Addendum to "On the Bergman kernel of hyperconvex domains", Nagoya Math. J. 137 (1995), 145–148
- [16] T. OHSAWA, K. TAKEGOSHI, On the extension of L^2 holomorphic functions, Math. Z. 195 (1987), 197–204
- [17] N. SUITA, Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal. 46 (1972), 212–217

Zbigniew Błocki Uniwersytet Jagielloński Instytut Matematyki Łojasiewicza 6 PL-30-348 Kraków, Poland e-mail: Zbigniew.Blocki@im.uj.edu.pl umblocki@cyf-kr.edu.pl