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Bergman kernel and pluripotential theory
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Dedicated to Duong Phong on the occasion of his 60th birthday

Abstract. We survey recent applications of pluripotential theory for the
Bergman kernel and metric.

Introduction

The fact that the theory of the Bergman kernel and metric for domains on the
complex plane is closely related to the classical potential theory is a well known
fact. However, for example the fact that regular domains are complete with respect
to the Bergman metric was proved only in late 90’s by B.-Y. Chen [16]. This result
was a by-product of methods of several complex variables. In the 90’s it turned
out that also pluripotential theory is very useful in multi-dimensional theory of the
Bergman kernel. Recent years brought some new results in this direction, by the
way also solving some one-dimensional problems.

The main new input from several complex variables to one-dimensional prob-
lems was the technique of weighted L2-estimates for the ∂̄-operator going back to
Hörmander [27]. Usually optimal weights in this particular context are constructed
using the pluricomplex Green function, one of the basic notions of pluripotential the-
ory. This method seems to have been completely missing in older one-dimensional
techniques, although Hörmander’s theorem was published already in 1965.

This paper surveys these recent developments. In Section 1 we discuss the
notion of Bergman completeness and the Kobayashi criterion for it. Section 2
presents some notions and results from pluripotential theory. They are applied in
Section 3 to obtain some results on the Bergman kernel and metric. Finally, in
Section 4 we discuss the recently settled Suita conjecture which is another example
of a one-dimensional result eventually proved using methods of several complex
variables. We also present several open problems related to this subject.

1. Bergman completeness, Kobayashi criterion

Let Ω be a bounded domain in C
n. By H2(Ω) we will denote the space of

holomorphic funtions in L2(Ω) and by || · || the L2-norm in Ω. The Bergman kernel
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KΩ(·, ·), defined on Ω× Ω, is determined by

f(w) =

∫

Ω

f KΩ(·, w)dλ, f ∈ H2(Ω), w ∈ Ω.

On the diagonal of Ω× Ω, by some abuse of notation, we write

KΩ(w) = KΩ(w,w) = sup{|f(w)|2 : f ∈ O(Ω), ||f || ≤ 1}.

The Bergman metric on Ω is the Kähler metric with the potential logKΩ, we
write BΩ = i∂∂̄ logKΩ. The riemannian distance given by this metric will be
denoted by distBΩ . We say that Ω is Bergman complete if it complete w.r.t. distBΩ .

The basic tool used to prove Bergman completeness is due to Kobayashi:

Theorem 1 (Kobayashi Criterion [30]). Assume that Ω is a bounded domain
in C

n. If

(1) lim
w→∂Ω

|f(w)|2

KΩ(w)
= 0, f ∈ H2(Ω),

then Ω is Bergman complete.

The converse is not true even for n = 1, as shown by Zwonek [39].
The proof of the Kobayashi Criterion is based on the following idea: the map-

ping
ι : Ω ∋ w 7−→ [KΩ(·, w)] ∈ P(H2(Ω))

embeds Ω into infinitely dimensional projective space P(H2(Ω)) equipped with the
Fubini-Study metric ωFS . One can show that

(2) BΩ = ι∗ωFS

and this is sometimes called the Kobayashi alternative definition of the Bergman
metric. Suppose that wk ∈ Ω is a Cauchy sequence w.r.t. distBΩ which is not
convergent. Without loss of generality we may assume that wk → ∂Ω. Since by (2)
the embedding ι is distance decreasing and since P(H2(Ω)) is complete, it follows
that ι(wk) converges to some [f ], where f 6= 0. But this means that for some λk ∈ C

with |λk| = 1 we have

λk
KΩ(·, wk)√
KΩ(wk)

−→
f

||f ||

in H2(Ω). This implies that f(wk)/
√
KΩ(wk) → ||f || which contradicts (1).

We see from this proof that a slightly weaker condition than (1)

(3) lim sup
w→∂Ω

|f(w)|2

KΩ(w)
< ||f ||2, f ∈ H2(Ω) \ {0}

is also sufficient for Bergman completeness.

Problem 1. Is (3) necessary for a bounded Ω to be Bergman complete?

The fact that the Kobayashi embedding ι is distance decreasing translates to

(4) distBΩ (z, w) ≥ arccos
|KΩ(z, w)|√
KΩ(z)KΩ(w)

.

An interesting consequence is

KΩ(z, w) = 0 ⇒ distB(z, w) ≥
π

2
.

It was shown in [21] that the constant π/2 is optimal here.
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2. Some pluripotential theory

Again we assume that Ω is a bounded domain in Cn. We say that it is hyper-
convex if it admits a negative plurisubharmonic (psh) exhaustion function. In other
words, there exists u ∈ PSH−(Ω) such that u = 0 on ∂Ω (uniformly). Demailly
[17] proved that any pseudoconvex domain with Lipschitz boundary is hyperconvex.
For n = 1 hyperconvexity is equivalent to regularity of the boundary.

Problem 2. Assume that Ω is a bounded pseudoconvex domain with continuous
boundary (that is ∂Ω is locally a graph of a continuous function). Does Ω have to
be hyperconvex?

There are some of those exhaustion functions in hyperconvex domains that are
of particular interest. Probably the most important one is the pluricomplex Green
function: for a pole w ∈ Ω we set

GΩ(·, w) = Gw := sup{v ∈ PSH−(Ω) : v ≤ log | · −w|+ C}.

The fundamental result is due to Demailly [17] who showed that it satisfies the
complex Monge-Ampère equation

(5) (ddcGw)
n = (2π)nδw

and that if Ω is hyperconvex then GΩ is continuous on Ω̄×Ω away from the diagonal
(vanishing on ∂Ω×Ω), see also [8] for a slightly different proof of the latter result.

It is in fact an open problem whether GΩ is continuous on Ω̄ × Ω̄ away from
the diagonal if Ω is hyperconvex. Equivalently, one can formulate it as follows:

Problem 3. If Ω is bounded and hyperconvex, is it true that Gw → 0 locally
uniformly in Ω as w → ∂Ω?

One can show a weaker convergence:

Proposition 2 ([13]). Assume that Ω is bounded and hyperconvex. Then for
every p < ∞ we have Gw → 0 in Lp(Ω) as w → ∂Ω.

On the other hand, Herbort [26] showed that the locally uniform convergence
holds for pseudoconvex domains with C2 boundary (see also [18] and [9]). Problem
3 has of course a positive answer if GΩ is symmetric. This is however usually not the
case if n > 1, as proved by Bedford and Demailly [1] (for a simpler counterexample
see [29]). It follows from the results of Lempert [32] that GΩ is symmetric if Ω is
convex.

Another important feature of hyperconvex domains is that the Dirichlet prob-
lem for the inhomogeneous complex Monge-Ampère operator can be solved on them.
Generalizing the fundamental result of Bedford and Taylor [2] it was proved in [6]
that if Ω is hyperconvex, f ∈ C(Ω̄), f ≥ 0, and ϕ ∈ C(∂Ω) is a restriction of some
psh u in Ω, continuous on Ω̄, then the following Dirichlet problem has a unique
solution 




u ∈ PSH(Ω) ∩ C(Ω̄)

(ddcu)n = f dλ

u = ϕ on ∂Ω.

Especially interesting case is for f ≡ 1 and ϕ ≡ 0, we denote the resulting solution
by uΩ.

Problem 4. Is uΩ ∈ C∞(Ω) for an arbitrary bounded hyperconvex Ω?
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Of course it is true for smooth strongly pseudoconvex Ω by the classical result
of Krylov [31] and Caffarelli-Kohn-Nirenberg-Spruck [15]. Then it is even smooth
up to the boundary, something that cannot be expected in general. The only other
case when the problem is known to have an affirmative answer is a polydisk, see [7].
The reason why one could expect it to hold in general is that in the analogous case of
the real Monge-Ampère equation on arbitrary bounded convex domain without any
regularity assumption the solution is indeed smooth, as proved by Pogorelov [37].

But even the continuity of uΩ on Ω̄ is useful. We can for example prove Propo-
sition 2: by [5] we have

∫

Ω

|Gw|
ndλ =

∫

Ω

|Gw|
n(ddcuΩ)

n ≤ n!||uΩ||
n−1
∞

∫

Ω

|uΩ(w)|(dd
cGw)

n.

By (5) we will get

(6) ||Gw||
n
n ≤ C|uΩ(w)|,

where C depends only on n and the volume of Ω. This gives Proposition 2 for p = n
and the general case easily follows from it.

3. Applications for the Bergman kernel and metric

We start with the result proved independently in [13] and [25]:

Theorem 3. Hyperconvex domains are Bergman complete.

We can use the following inequality of Herbort [25]:

(7)
|f(w)|2

KΩ(w)
≤ C

∫

{Gw<−1}

|f |2dλ, w ∈ Ω, f ∈ H2(Ω),

where C depends only on n and the diameter of Ω. It holds in arbitrary pseudo-
convex domain. This estimate was proved using Hörmander’s estimate for ∂̄ [27],
the main use of the pluricomplex Green function in this context is from the fact
that e−2nGw is not locally integrable near w.

Kobayashi Criterion and (7) imply that for a bounded pseudoconvex domain
the condition

lim
w→∂Ω

λ({Gw < −1}) = 0

is sufficient for Bergman completeness. But for hyperconvex domains it follows
immediately from Proposition 2 and we get Theorem 3.

Herbort’s inequality (7) with f ≡ 1 gives

(8) KΩ(w) ≥
1

Cλ({Gw < −1})

Combining this with (6) we get the following lower bound for the Bergman kernel
in terms of a solution of the complex Monge-Ampère equation:

KΩ ≥
1

C|uΩ|
.

Another very interesting application of pluripotemntial theory has been to
prove a quantitative lower bound for the Bergman distance in pseudoconvex do-
mains with smooth boundary. Of course, a bounded domain Ω in Cn is Bergman
complete if and only if for a fixed z0 ∈ Ω we have

lim
z→∂Ω

distBΩ(z, z0) = ∞.
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Theorem 3 means that this is the case for hyperconvex domains but the proof does
not give any quantitative behaviour of teh Bergman distance near the boundary.
Diederich and Ohsawa [19] showed the following lower bound for domains with
C2-boundary:

distBΩ (·, z0) ≥
1

C
log log δ−1

Ω ,

where δΩ(z) is the euclidean distance of z to ∂Ω and a positive constant C depends
on Ω and z0. They used in particular a rather technical analogue of the Green
function.

Their approach was simplified in [9], where an improved estimate was shown:

distBΩ (·, z0) ≥
log δ−1

Ω

C log log δ−1
Ω

.

The key was the following result directly linking the pluricomplex Green func-
tion with the Bergman metric: if Ω is pseudoconvex and z, w ∈ Ω are such that
{Gz < −1} ∩ {Gw < −1} = ∅ then

distBΩ (z, w) ≥ cn > 0.

Problem 5. Does the following estimate hold for bounded pseudoconvex do-
mains with C2 boundary:

distBΩ (·, z0) ≥
1

C
log δ−1

Ω
?

It would be optimal. It is known for strongly pseudoconvex domains and also for
convex ones (in the latter case without any additional assumptions on the boundary
- see [9]).

4. Suita Conjecture

Let D be a bounded domain in C. For z ∈ D the capacity of the complement
of D with respect to z is given by

cD(z) = exp( lim
ζ→z

(GD(ζ, z)− log |ζ − z|)).

It is not invariant with respect to biholomorphic mappings but one can easily show
that the metric cD|dz| is. It was considered by Suita [38] who conjectured the
following upper bound for its curvature

(9) −
(log cD)zz̄

c2D
≤ −1.

One can easily show that we have equality in (9) if D is simply connected. For
arbitrary D, by approximation it is enough to prove (9) for domains with smooth
boundary. One can also show that then we have equality on the boundary. There-
fore the Suita conjecture essentially asks whether the curvature of cD|dz| satisfies
the maximum principle.

Suita [38], using elliptic functions, proved strict inequality in (9) for an annulus,
and thus for any doubly connected regular domain. For example, if D = {e−5 <
|z| < 1} the curvature of cD|dz| as a function of log |z| looks as follows (pictures
made with Mathematica):
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On the other hand, it is not a common property of invariant metrics in complex
analysis that their curvatures satisfy the maximum principle. For example, for the
same annulus we have the following picture for the curvature of the Bergman metric

BD = ∂2

∂z∂z̄ (logKD)|dz|2

−5 −4 −3 −2 −1

−6

−5

−4

−3

−2

−1

It was in fact shown in [20] (see also [40]) that the maximum of the curvature of
the Bergman metric on the annulus {r < |z| < 1} tends to 2, the optimal upper
bound, as r → 0.

Suita [38] proved that

KD =
1

π
(log cD)zz̄,

it can in fact be easily deduced from the Schiffer formula

KD(z, w) =
2

π

∂2GD

∂z∂w̄
(z, w), z 6= w.

This means that (9) is equivalent to

(10) c2D ≤ πKD.

A breakthrough came with a paper of Ohsawa [35] who realized that this is really
an extension problem: it is equivalent, given z ∈ D, to construct a holomorphic f
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in D with f(z) = 1 and ∫

D

|f |2dλ ≤
π

(cD(z))2
.

Using the methods of the original proof of the Ohsawa-Takegoshi extension theorem
[36] he obtained the estimate

c2D ≤ CπKD

with C = 750. This was later improved to C = 2 in [10] and to C = 1.95388 . . .
in [24].

The inequality (10) was eventually showed in [11] where also a version of
the Ohsawa-Takegoshi extension theorem with optimal constant was obtained. Of
course the same proof of (10) works also for Riemann surfaces admitting a Green
function (that is the ones admitting a bounded nonconstant subharmonic function).
Guan and Zhou [23] have recently answered in the affirmative a more detailed ques-
tion of Suita: strict inequality in (10) holds for all Riemann surfaces except for those
that are biholomorphic to the unit disk with possibly a closed polar subset removed.

It turns out that finding the best constant in Herbort’s estimate (7) and in
(8) leads to a simpler proof of the Suita conjecture than in [11]. It was recently
explored in [12]. Herbort [25] originally showed (7) with

C = 1 + 4e4n+3+R2

.

where R is such that Ω ⊂ B(z0, R) for some z0. It was improved in [9] to

(11) C = Cn = (1 + 4/Ei(n))2,

where

Ei(t) =

∫ ∞

t

ds

ses
.

The main tool was an estimate for ∂̄ due to Donnelly and Fefferman [22] (Berndts-
son [3] proved that in fact it can be quite easily deduced from Hörmander’s esti-
mate).

A way to improve this constant is to use the tensor power trick: for a positive

integer m consider the domain Ω̃ = Ω × · · · × Ω ⊂ Cnm, w̃ = (w, . . . , w) and

f̃(z1, . . . , zm) = f(z1) . . . f(zm). Then

K
Ω̃
(z1, . . . , zm) = KΩ(z

1) . . .KΩ(z
m)

and by [28]

{Gw̃ < −1} = {Gw < −1} × · · · × {Gw < −1}.

Now by (7) with the constant (11) we get

|f(w)|2

KΩ(w)
≤ C1/m

nm

∫

{Gw<−1}

|f |2dλ.

Since

lim
m→∞

C1/m
nm = e2n,

we obtain (7) with C = e2n and this constant is optimal (take for example f ≡ 1
in a ball and w its center).
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Doing the same for an arbitrary sublevel set we obtain the following result:

Theorem 4. Assume that Ω is pseudoconvex, f ∈ H2(Ω), w ∈ Ω and a ≥ 0.
Then

|f(w)|2

KΩ(w)
≤ e2na

∫

{Gw<−a}

|f |2dλ.

For f ≡ 1 we get the main estimate from [12]:

(12) KΩ(w) ≥
1

e2naλ({Gw < −a})
.

Now, letting a → ∞, we easily get (10). This way we have obtained a nontrivial
one-dimensional result making use in an essential way of many complex variables.
As noticed by Lempert [33], the estimate (12) can be also deduced from a result of
Berndtsson [4] on log-subharmonicity of sections of the Bergman kernel.

This estimate can also be used to simplify the complex analytic proof of the
Bourgain-Milman inequality [14] due to Nazarov [34], for details see [12].
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