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Abstract. We show that geodesics in the space of Kähler metrics are of class C1,1,
provided that the manifold has nonnegative bisectional curvature. X.X.Chen has
proved that these geodesics have bounded mixed complex derivatives (without any
curvature assumption). We also analyze his proof of this, and of the fact that the
space of Kähler metrics with the distance defined by its Riemannian structure is a
metric space.

1. Introduction

Let M be a compact complex manifold of dimension n with Kähler form ω. We
consider the space of Kähler potentials

H := {ϕ ∈ C∞(M) : ωϕ := ω + ddcϕ > 0}

and the Kähler class
K := {ωϕ : ϕ ∈ H}.

We can treat H as an open subset in the space C∞(M) with topology of uni-
form convergence of all partial derivatives and differential structure defined by
C∞(U,M) := C∞(M × U), for any region U ⊂ Rm.

For ϕ ∈ H we can associate the tangent space TϕH with C∞(M). Mabuchi [19]
introduced a Riemannian structure on H as follows:

〈ψ, η〉 :=
∫

M

ψηωn
ϕ, ψ, η ∈ TϕH.

One can check that it gives the following Levi-Civita connection: for a smooth
curve ϕ ∈ C∞([a, b],H) (which we treat as an element of C∞(M × [a, b])) and ψ,
a smooth vector field on ϕ (which we also treat as an element of C∞(M × [a, b])),
we have

∇ϕ̇ψ = ψ̈ − 1
2
〈∇ψ̇,∇ϕ̇〉,
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where ϕ̇ = ∂ϕ/∂t and ∇, 〈·, ·〉 are taken w.r.t. the metric ωϕ. This connection is
compatible with the Riemannian structure: if η is another vector field on ϕ then

d

dt
〈ψ, η〉 = 〈∇ϕ̇ψ, η〉+ 〈ψ,∇ϕ̇η〉.

A curve ϕ is a geodesic if

(1.1) ϕ̈− 1
2
|∇ϕ̇|2 = 0

(with ∇ and | · | taken w.r.t. ωϕ).
This Riemannian structure onH also gives a structure on K which is independent

of the choice of ω. It is defined by the restriction to the subspace H0 := I−1(0),
where the functional

I(ϕ) :=
1
V

n∑
p=0

1
p + 1

∫

M

ϕωp
ϕ ∧ ωn−p

(V =
∫

M
ωn) is obtained from the splitting of the tangent space

TϕH = R⊕ {ψ ∈ C∞(M) :
∫

M

ψωn
ϕ = 0}.

(I is sometimes called the Aubin-Yau functional.) One can easily show that if ϕ is
a geodesic in H then ϕ − I(ϕ) is a geodesic in H0, and thus for example H being
geodesically convex would imply that so is K.

For an arbitrary curve ϕ ∈ C∞([a, b],H) we define its length in a standard way:

l(ϕ) :=
∫ b

a

|ϕ̇|dt =
∫ b

a

√∫

M

ϕ̇2ωn
ϕ dt

and for ϕ0, ϕ1 ∈ H their distance by

d(ϕ0, ϕ1) := inf{l(ϕ) : ϕ ∈ C∞([0, 1],H), ϕ(0) = ϕ0, ϕ(1) = ϕ1}

(every pair ϕ0, ϕ1 ∈ H can be connected by the curve (1− t)ϕ0 + tϕ1 in H).
The following result was proved in [8]:

Theorem 1.1. (H, d) is a metric space.

The only problem with this theorem is whether d(ϕ0, ϕ1) > 0 for ϕ0 6= ϕ1. We
will show the following quantitative version of this statement (which is a slight
improvement of related estimates from [10] and [8]):

Theorem 1.2. For ϕ0, ϕ1 ∈ H we have

d(ϕ0, ϕ1) ≥
√

max
{ ∫

{ϕ0>ϕ1}
(ϕ0 − ϕ1)2ωn

ϕ0
,

∫

{ϕ1>ϕ0}
(ϕ1 − ϕ0)2ωn

ϕ1

}
.

The proof of this result consists of two steps: establishing such an estimate for a
geodesic distance and then showing that d is equal to the geodesic distance. Very
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existence of a geodesic connecting two arbitrary points inH is still an open problem.
It was observed by Semmes [22] and Donaldson [10] that the equation (1.1), after
the change of variables t = log |ζ|, ζ ∈ C∗, is equivalent to the homogeneous complex
Monge-Ampère equation

(ω + ddcϕ)n+1 = 0.

To find a geodesic connecting ϕ0, ϕ1 ∈ H one thus have to find a solution to the
following Dirichlet problem:

(1.2)





ϕ ∈ C∞(M × {e0 ≤ |ζ| ≤ e1}),
ω + ddcϕ(·, ζ) > 0, e0 ≤ |ζ| ≤ e1,

(ω + ddcϕ)n+1 = 0,

ϕ(·, ζ) = ϕj , |ζ| = ej , j = 0, 1.

More generally, we may consider the following problem: for a compact Kähler
manifold M̃ (of dimension N) with smooth boundary, a Kähler form ω̃ on M̃ , and
ψ ∈ C∞(∂M), we look for ϕ satisfying

(1.3)





ϕ ∈ C∞(M̃)
ω̃ + ddcϕ ≥ 0,

(ω̃ + ddcϕ)N = 0,

ϕ = ψ, on ∂M̃.

(In case of problem (1.2) we take the Kähler form ω̃ := ω + ddc|ζ|2 and subtract
|ζ|2 from the obtained solution.) Uniqueness (even among solutions that are much
less regular than C∞) of (1.3) is a direct consequence of a comparison principle
for the complex Monge-Ampère equation (see Proposition 2.2 below). However,
the following example of Gamelin and Sibony [11] shows that in general a C1,1-
regularity of the solution is the best one can hope for: the function

u(z, w) := (max{0, |z|2 − 1
2
, |w|2 − 1

2
})2

is C∞-smooth on the boundary of the unit ball of C2, satisfies (ujk̄) ≥ 0 (where
we use the notation uj = ∂u/∂zj , uk̄ = ∂u/∂z̄k), det(ujk̄) = 0, but it is not C2.
On the other hand, as shown in [14], in case of toric manifolds H (and thus K) is
geodesically convex (or equivalently, (1.2) can be solved for such manifolds). The
general case remains open.

Chen [8] showed that any ϕ0, ϕ1 ∈ H can be joined by a C1,1-geodesic. What
he was really proving was that for any ϕ0, ϕ1 ∈ H there exists a weak geodesic
connecting ϕ0, ϕ1 whose Laplacian is bounded (or equivalently, its mixed complex
derivatives are bounded; by a weak geodesic we mean that it satisfies ωϕ ≥ 0 instead
of ωϕ > 0 and that the intermediate metrics might be less regular than C∞). We
will slightly improve this result if the bisectional curvature is nonnegative: we will
show that this geodesic is then really of class C1,1 (that is all partial derivatives of
second order are bounded).

The key step (also in the proof of Theorems 1.1 and 1.2) is considering approxi-
mations of geodesics which will lead to a nondegenerate Monge-Ampère equation:
for ε > 0 a curve ϕ ∈ C∞([a, b],H) is called an ε-geodesic if

(1.1’) (ϕ̈− 1
2
|∇ϕ̇|2)ωn

ϕ = εωn.
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This leads to the following modification of (1.2):

(1.2’)





ϕ ∈ C∞(M × {e0 ≤ |ζ| ≤ e1}),
ω + ddcϕ(·, ζ) > 0, e0 ≤ |ζ| ≤ e1,

(ω + ddcϕ)n+1 = 4ε|ζ|2(ω + ddc|ζ|2)n+1,

ϕ(·, ζ) = ϕj , |ζ| = ej , j = 0, 1.

More generally, for positive f ∈ C∞(M̃) we get the following modification of
(1.3):

(1.3’)





ϕ ∈ C∞(M̃)
ω̃ + ddcϕ > 0,

(ω̃ + ddcϕ)N = fω̃N ,

ϕ = ψ, on ∂M̃.

We will sketch how to prove the following result (see also [21], p. 68):

Theorem 1.3. If (M̃, ω̃) is a compact Kähler manifold with smooth nonempty
boundary, ψ ∈ C∞(M̃) is such that ω̃ + ddcψ > 0, (ω̃ + ddcψ)N ≥ fω̃N , and
f ∈ C∞(M̃), f > 0, then (1.3’) has a unique solution.

For bounded strongly pseudoconvex domains in CN this was proved in [7], and
in [13] without the assumption of strict pseudoconvexity. Many of the estimates
from these papers carry on without much change to our situation, but there are two
major exceptions: interior gradient and interior C1,1-estimates. As for the gradient
estimate, for the proof of Theorem 1.3 one can either use the blowing-up analysis
from [8] or estimates from [6] and [15] (proved independently from each other and
also from [17], where such a gradient estimate is proved in the non-degenerate case).
Concerning the C1,1-estimate, we want to stress that it is necessary to establish it in
order to prove existence of solutions of the non-degenerate equation (1.3’) (and only
then can one obtain solutions of the degenerate equation (1.3) by approximation).
Our way to deal with this is Theorem 3.4 below (which is the main result of the
paper). In an analogous situation a similar estimate is given in Lemma 3.12 from
[9] which is proved by a different method, using more standard elliptic theory (we
are grateful to X.X.Chen for calling our attention to this reference).

As a result we obtain the following regularity of the degenerate equation for
manifolds with flat boundary (we say that ∂M̃ is flat if for every w ∈ ∂M̃ there
exists a holomorphic change of variables near w such that ∂M̃ there is of the form
{Re zN = 0}) (which in addition implies the aforementioned regularity of geodesics
in the nonnegative bisectional curvature case):

Theorem 1.4. Assume that ∂M̃ is flat and let ψ ∈ C3,1(M̃) be such that ω̃ψ > 0.
Then there exists unique ϕ with bounded Laplacian in M̃ (so in particular ϕ ∈
C1,α(int M̃) for α < 1) such that ω̃ϕ ≥ 0, ω̃N

ϕ = 0 and ϕ = ψ on ∂M̃ . If in
particular (M̃, ω̃) has nonnegative bisectional curvature then ϕ ∈ C1,1(M̃).

The organization of the paper is as follows: in Section 2 we prove a general com-
parison principle for the degenerate Monge-Ampère equation on compact Kähler
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manifolds with boundary (Theorem 2.3). To prove the most general result we have
to follow a method from [5]. In Section 3 we discuss a priori estimates for the
Monge-Ampère equation, sketch the proof of Theorem 1.3 and give a proof of The-
orem 1.4. In Section 4 we discuss Chen’s proof of Theorem 1.1. One thing which
should be analyzed a bit more carefully is the proof of Theorem 5 in [8] on p. 219:
it is implicitely assumed there that E is bounded away from 0, which is only the
case when the curve does not intersect the origin. In the proof of Theorem 4.4 (and
in Lemma 4.5) we show how to deal with this extra assumption.

Most of this research was done during the author’s visit to the Indian Institute
of Science in Bangalore. He would like to thank, especially Gautam Bharali, for the
invitation, hospitality, and stimulating atmosphere. He is also grateful to Xiuxiong
Chen for interesting discussions on this subject.

2.A general comparison principle

Let (M̃, ω̃) be a compact Kähler manifold with nonempty boundary ∂M̃ (not
necessarily smooth). We start with two simple special cases covering in particular
uniqueness in problems (1.3’) and (1.3).

Proposition 2.1. Assume that ϕ1, ϕ2 ∈ C2(M̃) are such that ω̃ϕ1 > 0, ω̃ϕ2 > 0,
ω̃N

ϕ1
≥ ω̃N

ϕ2
, and ϕ1 ≤ ϕ2 on ∂M̃ . Then ϕ1 ≤ ϕ2 on M̃ .

Proof. We have
0 ≤ ω̃N

ϕ1
− ω̃N

ϕ2
= ddc(ϕ1 − ϕ2) ∧ T,

where

T =
N−1∑

j=0

ω̃j
ϕ1
∧ ω̃N−1−j

ϕ2
> 0.

It follows that ϕ1 − ϕ2 satisfies the maximum principle. ¤

Concerning the problem (1.3), one can show uniqueness even among generalized
solutions in the sense of Bedford and Taylor [3], [4]:

Proposition 2.2. Let ϕj be continuous on M̃ and such that ω̃ϕj ≥ 0, j = 1, 2.
Assume that ω̃N

ϕ2
= 0 and ϕ1 ≤ ϕ2 on ∂M̃ . Then ϕ1 ≤ ϕ2 on M̃ .

Proof. (See also [20], p. 144). Without loss of generality we may assume that ϕ1, ϕ2

are nonnegative. Suppose {ϕ1 > ϕ2} 6= ∅. Then S := {λϕ1 > ϕ2} 6= ∅ for some
λ < 1. For ε > 0 set ϕε := max{λϕ1, ϕ2 + ε}. Then ϕε decreases to λϕ1 on S as ε
decreases to 0, but ϕε = ϕ2 + ε near ∂S. It follows that

∫

S

ω̃N
ϕ2

= lim inf
ε→0

∫

S

ω̃N
ϕε
≥

∫

S

ω̃N
λϕ1

> λN

∫

S

ω̃N
ϕ1

which contradicts the fact that ω̃N
ϕ2

= 0. ¤

The following result covers both Propositions 2.1 and 2.2 but is a bit more
difficult to prove, we follow a method from [5]:

Theorem 2.3. Let ϕj be continuous on M̃ and such that ω̃ϕj ≥ 0, j = 1, 2.
Assume that ω̃N

ϕ2
≤ ω̃N

ϕ1
and ϕ1 ≤ ϕ2 on ∂M̃ . Then ϕ1 ≤ ϕ2 on M̃ .
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Proof. For ε > 0 let ϕε := max{ϕ1, ϕ2 +ε}. Then ϕε = ϕ2 +ε near ∂M̃ . Therefore,
by the well known inequality for continuous plurisubharmonic functions:

(ddc max{u, v})N ≥ χ{u≥v}(ddcu)N + χ{u<v}(ddcv)N ,

it follows that without loss of generality we may assume that ϕ1 = ϕ2 near ∂M̃

and ϕ1 ≥ ϕ2 on M̃ . We have to show that ϕ1 = ϕ2.
For simplicity of presentation, from now on we will assume that N = 2, the

general case is similar (see [5] for necessary modifications). We have

0 ≤ ω̃2
ϕ1
− ω̃2

ϕ2
= ddcρ ∧ (ω̃ϕ1 + ω̃ϕ2),

where ρ := ϕ1 − ϕ2. Integrating by parts

0 ≤
∫

M̃

ρ ddcρ ∧ (ω̃ϕ1 + ω̃ϕ2) = −
∫

M̃

dρ ∧ dcρ ∧ (ω̃ϕ1 + ω̃ϕ2),

and thus

(2.1) dρ ∧ dcρ ∧ ω̃ϕ1 = dρ ∧ dcρ ∧ ω̃ϕ2 = 0.

It will be enough to show that

(2.2) dρ ∧ dcρ ∧ ω̃ = 0.

We have
∫

M̃

dρ ∧ dcρ ∧ ddcϕ1 = −
∫

M̃

ρ ddcρ ∧ ddcϕ1

=
∫

M̃

dρ ∧ dcϕ1 ∧ ddcρ =
∫

M̃

dρ ∧ dcϕ1 ∧ (ω̃ϕ1 − ω̃ϕ2).

By the Schwarz inequality

∣∣∣∣
∫

M̃

dρ ∧ dcϕ1 ∧ ω̃ϕj

∣∣∣∣
2

≤
∫

M̃

dρ ∧ dcρ ∧ ω̃ϕj

∫

M̃

dϕ1 ∧ dcϕ1 ∧ ω̃ϕj .

From (2.1) it now follows that
∫

M̃

dρ ∧ dcϕ1 ∧ ω̃ϕj = 0

and we get (2.2). ¤

3.A priori estimates

We assume that (M̃, ω̃) is a compact Kähler manifold with smooth nonempty
boundary ∂M̃ . In order to prove Theorem 1.3, by continuity method it is enough
to establish for some α ∈ (0, 1) the a priori estimate

(3.1) ||ϕ||
C2,α(M̃)

≤ C
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for solutions of (1.3’).
Any C2-solution ϕ of (1.3’) satisfies

ψ ≤ ϕ ≤ h,

where h is the harmonic function on M̃ with h = ψ on ∂M̃ . It follows that

sup
M̃

|ϕ| ≤ C,

and
sup
∂M̃

|∇ϕ| ≤ C,

where C depends only on M̃ , ω̃, and ||ψ||
C0,1(M̃)

.
The next step is an interior gradient estimate. One possibility is the blowing-up

analysis of [8] (then one has to consider the C1,1-estimate first). A more direct
approach is the following estimate from [6] (see also [17] and [15]):

Theorem 3.1. Let ϕ ∈ C3(M̃) be such that ω̃ϕ > 0 and ω̃N
ϕ = fω̃N . Then

|∇ϕ| ≤ C,

where C depends only on upper bounds for |ϕ|, sup
∂M̃

|∇ϕ|, ||f1/N ||
C0,1(M̃)

, N , and

a lower bound for the bisectional curvature of M̃ . ¤

To prove a C1,1-estimate on the boundary one has to follow [7] and [13]. One
will obtain:

Theorem 3.2. For ϕ ∈ C4(M̃) with ω̃ϕ > 0 and ω̃N
ϕ = fω̃N one has

sup
∂M̃

|∇2ϕ| ≤ C,

where C depends only on M̃ , ω̃, on upper bounds for ||ϕ||
C0,1(M̃)

, ||ψ||
C3,1(M̃)

,
||f1/N ||

C0,1(M̃)
, and on positive lower bounds for f and for eigenvalues of ωψ. ¤

The proof of Theorem 3.2 is divided into three steps: estimates for tangential-tan-
gential, tangential-normal and normal-normal derivatives. The tangential-tangen-
tial case is very simple (see [7]), the tangential-normal one has to follow B. Guan’s
estimate [13] (this is how it is also done in [8]), and then the normal-normal case
one does the same way as in [7].

For the regularity of geodesics in H one needs to show that the estimate is
independent of the lower bound for f . This can be easily done when ∂M̃ is flat:

Theorem 3.2’. If ∂M̃ is flat the estimate in Theorem 3.2 does not depend on a
lower bound for f .

Proof. The estimates for tangential-tangential and tangential-normal derivatives
from [7] and [13] do not depend on a lower bound for f , the only problem is the
normal-normal case. We work in a ball B(0, R) in CN and assume that there int M̃



8 ZBIGNIEW BÃLOCKI

is equal to {xN < 0} (we use the notation zj = xj + iyj). Write u = g + ϕ and
v = g + ψ where ω = ddcg. We have

det(ujk̄) = f̃ ,

where f̃ = f det(gjk̄). On the other hand on {xN = 0}

det(ujk̄) = uNN̄ det(ujk̄)j,k≤N−1 + R = uNN̄ det(vjk̄)j,k≤N−1 + R,

where |R| is under control from above. Therefore at {xN = 0}

uNN̄ ≤ C

λN−1
,

where λ > 0 is such that (vjk̄) ≥ λ(δjk). ¤
The normal-normal boundary estimate from the proof of Theorem 3.2’ is the

only time when we need the assumption of flatness. By Krylov [18] (who used com-
pletely different, probabilistic methods), this estimate is however also true without
this assumption. Therefore so is Theorem 1.4, even for a more general degenerate,
but not necessarily homogeneous, equation. It would be interesting to prove a gen-
eral normal-normal boundary estimate for the degenerate complex Monge-Ampère
equation not using probabilistic methods. In the real case this was done in [16].

We now turn to interior estimates for second derivatives. For the mixed complex
derivatives we can use the Aubin-Yau estimate ([1], [24]). We will obtain (see also
[6]):

Theorem 3.3. For ϕ ∈ C4(M̃) with ω̃ϕ > 0 and ω̃N
ϕ = fω̃N one has

∆ϕ ≤ C,

where C depends only on upper bounds for |ϕ|, sup
∂M̃

∆ϕ, f , N , scalar curvature,
and on lower bounds for f1/(N−1)∆(log f) and bisectional curvature. ¤

The next step is the aforementioned interior C1,1-estimate:

Theorem 3.4. Assume that ϕ ∈ C4(M̃), ω̃ϕ > 0, and ω̃N
ϕ = fω̃N . Then

|∇2ϕ| ≤ C,

where C is a constant depending only on upper bounds for N , |R|, |∇R|, |ϕ|, |∇ϕ|,
∆ϕ, sup

∂M̃
|∇2ϕ|, ||f1/N ||

C1,1(M̃)
, |∇(f1/2N )|, and on a lower positive bound for

f . If M̃ has a nonnegative bisectional curvature then the estimate is independent
of a lower bound for f .

Remarks. 1. By an upper bound for |R| (resp. |∇R|) we understand a constant C
such that

|R(X1, . . . , X4)| ≤ C|X1| . . . |X4|, X1, . . . , X4 ∈ TM̃

(resp. |(∇R)(X1, . . . , X5)| ≤ C|X1| . . . |X5|, X1, . . . , X5 ∈ TM̃).



SPACE OF KÄHLER METRICS 9

2. Since h := f1/N ≥ 0, it is an elementary fact that if h extends as a nonnegative
C1,1 function to some neighborhood of M̃ , then |∇(h1/2)| is under control, provided
that ||h||

C1,1(M̃)
is (of course depending also on the extension).

Theorem 3.4 in fact can be also used in the proof of the Calabi-Yau theorem
(the problem (1.3’) with empty boundary) in order to apply the real Evans-Krylov
theory directly (and not repeat it in the complex case, see e.g. [23]).

Proof of Theorem 3.4. At a given point of M̃ , let β denote the maximal eigenvalue
of the mapping

TM̃ 3 X 7−→ ∇X∇ϕ,

so that

β = max
X∈TM̃\{0}

〈∇X∇ϕ,X〉
|X|2 .

Then β is a continuous function on M̃ (but not necessarily smooth). It is clear that
it is enough to estimate β from above.

Locally we have (using the notation ∂j = ∂/∂zj , ∂j̄ = ∂/∂z̄j , and denoting by
(gjk̄) the inverse of (gjk̄), where ω̃ = ddcg)

∇∂j∇ϕ = ∂j(gpq̄ϕp)∂q̄ + ∂j(gpq̄ϕq̄)∂p + gpq̄ϕq̄Γs
jp∂s

= gpq̄ϕjq̄∂p + (gpq̄ϕp)j∂q̄.

Therefore for a real vector field X = Xj∂j + X̄k∂k̄

〈∇X∇ϕ,X〉 = 2Re Xj
(
X̄kϕjk̄ + X lglq̄(gpq̄ϕp)j

)

= D2
Xϕ + 2Re

(
XjX lgpq̄gjq̄lϕp

)
,

where DX denotes euclidean directional derivative in direction X.
On M̃ define

α := β + |∇ϕ|2 −Aϕ,

where A is a positive constant under control that will be specified later. We may
assume that α attains maximum at some O in the interior of M (for otherwise we
are done). We can find holomorphic coordinates near O such that at O the matrix
(ϕjk̄) is diagonal and

(3.2) gjk̄ = δjk, gjk̄l = gjk̄lm = 0.

Choose fixed X = (X1, . . . , XN ) ∈ CN such that at O |X|2(= 2gjk̄XjX̄k) = 1 and

β = 〈∇X∇ϕ,X〉.

Near O define

β̃ :=
〈∇X∇ϕ,X〉

|X|2
and

α̃ := β̃ + |∇ϕ|2 −Aϕ.
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Then β̃ ≤ β, β̃(O) = β(O), and

α̃ ≤ α ≤ α(O) = α̃(O),

so that (locally defined) α̃ also has a maximum at O, equal to that of α. The
advantage of α̃ though is that it is smooth! It remains to estimate β̃(O) from
above.

Set u := ϕ + g, then the Monge-Ampère equation gives near O

(3.3) det(upq̄) = f̃ ,

where
f̃ := f det(gpq̄).

Differentiating (3.3) we will get

upq̄DXupq̄ = DX(log f̃)

and
upq̄D2

Xupq̄ = D2
X(log f̃) + upt̄usq̄DXupq̄DXust̄.

At O by (3.2) and (3.3)

D2
X(log det(gpq̄)) =

∑
p

D2
Xgpp̄

and therefore
∑

p

D2
Xϕpp̄

upp̄
≥ D2

X(log f) +
∑

p

D2
Xgpp̄ −

∑
p

D2
Xgpp̄

upp̄
.

We also have

1
N

D2
X(log f) = D2

X(log f1/N ) ≥ − C1

f1/N
≥ −C1

∑
p

1
upp̄

by (3.2) and the inequality between arithmetic and geometric means (where by
C1, C2, . . . we will denote constants under control). From the fact that |R| is under
control we will now get

(3.4)
∑

p

D2
Xϕpp̄

upp̄
≥ −C3

∑
p

1
upp̄

− C4 ≥ −C5

∑
p

1
upp̄

since upp̄ is under control from above.
Using the fact that |X| = 1 and (|X|2)p = 0 at O, combined with (3.2), at O we

will get

(3.5)

β̃pp̄ = D2
Xϕpp̄ + 2Re

∑

l

XjXkgjl̄kp̄pϕl

+ 2Re
∑

l

XjXkgjl̄kp̄ϕlp −XjX̄kgjk̄pp̄D
2
Xϕ

≥ D2
Xϕpp̄ − C6 − C7

∑

l

|ϕlp| − C8β̃,
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where we used in addition that |∇R| is under control.
Near O we have

(|∇ϕ|2)p = (gjk̄)pϕjϕk̄ + gjk̄ϕjpϕk̄ + gjk̄ϕjϕpk̄.

Therefore at O

(|∇ϕ|2)pp̄ =
∑

j,k

Rjk̄pp̄ϕjϕk̄ + 2Re
∑

j

ϕjpp̄ϕj̄ +
∑

j

|ϕjp|2 + ϕ2
pp̄.

Since
1
2

∑

j

|ϕjp|2 − C7

∑

j

|ϕjp| ≥ −C9,

2Re
∑

j,p

ϕjpp̄ϕj̄

upp̄
= 2Re

∑

j

(log f)jϕj̄ ≥ − C10

f1/n
≥ −C10

∑
p

1
upp̄

,

and
1
2

∑

j,p

|ϕjp|2
upp̄

≥ 1
C11

β̃2 − C12,

from (3.4), (3.5) it follows that

∑
p

β̃pp̄

upp̄
+

∑
p

(|∇ϕ|2)pp̄

upp̄
≥ 1

C11
β̃2 − C13

∑
p

1
upp̄

− C8β̃
∑

p

1
upp̄

and finally

0 ≥
∑

p

αpp̄

upp̄
≥ 1

C11
β̃2 − C13

∑
p

1
upp̄

− C8β̃
∑

p

1
upp̄

+ A
∑

p

1
upp̄

−AN.

If M̃ has nonnegative bisectional curvature then we may take C8 = 0 (this constant
is coming from (3.5)) and A = C13. In the general case, if f is controlled from
below (which we have not yet used) then

∑
p 1/upp̄ is controlled from above and

the theorem follows immediately (with A = 0). ¤
Once we have the C1,1-estimate, the C2,α-estimate (3.1) in the nondegenerate

case follows from [7]. This gives Theorem 1.3 and we also obtain Theorem 1.4 by
approximation by smooth solutions.

4. The metric structure of H
The results of Section 2 have the following consequence on ε-geodesics in H:

Theorem 4.1. For ϕ0, ϕ1 ∈ H and ε > 0 there exists a unique ε-geodesic ϕ
connecting ϕ0 with ϕ1. Moreover, it depends smoothly on ϕ0, ϕ1, i.e. if ϕ0, ϕ1 ∈
C∞([0, 1],H) then there exists unique ϕ ∈ C∞([0, 1]× [0, 1],H) such that ϕ(0, ·) =
ϕ0, ϕ(1, ·) = ϕ1, and ϕ(·, t) is an ε-geodesic for every t ∈ [0, 1].

In addition, in variables (z, ζ), where t = log |ζ|, it satisfies the estimate

ddcϕ ≤ C(ω + ddc|ζ|2),
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where C is independent of ε (if ε is small). ¤
(Smooth dependence of solutions of (1.3’) on boundary data follows from standard
elliptic theory, see e.g. [2], [12].) Our aim is to prove Theorem 1.1. As in [8], we
start with the following:

Lemma 4.2. Let ϕ be an ε-geodesic connecting ϕ0, ϕ1 ∈ H, and set

E :=
∫

M

ϕ̇2ωn
ϕ.

Then
E ≥ E(ϕ0, ϕ1)− 2εV ||ϕ̇||,

where

E(ϕ0, ϕ1) := max
{ ∫

{ϕ0>ϕ1}
(ϕ0 − ϕ1)2ωn

ϕ0
,

∫

{ϕ1>ϕ0}
(ϕ1 − ϕ0)2ωn

ϕ1

}

and ||ϕ̇|| = supM×[0,1] |ϕ̇|. In particular,

l(ϕ)2 ≥ E(ϕ0, ϕ1)− 2εV ||ϕ̇||.

Proof. We have

Ė =
∫

M

(2ϕ̇ϕ̈ +
1
2
ϕ̇2∆ϕ̇)ωn

ϕ = 2
∫

M

ϕ̇(ϕ̈− 1
2
|∇ϕ̇|2)ωn

ϕ = 2ε

∫

M

ϕ̇ωn.

Thus |Ė| ≤ 2εV ||ϕ̇|| which implies that

E(t) ≥ max{E(0), E(1)} − 2εV ||ϕ̇||.

Since ϕ̈ ≥ 0,
ϕ̇(0) ≤ ϕ(1)− ϕ(0) ≤ ϕ̇(1).

For z ∈ M with ϕ1(z) > ϕ0(z) we thus have ϕ̇(z, 1)2 ≥ (ϕ1(z)−ϕ0(z))2. Therefore

E(1) ≥
∫

{ϕ1>ϕ0}
(ϕ1 − ϕ0)2ωn

ϕ1
.

Similarly

E(0) ≥
∫

{ϕ0>ϕ1}
(ϕ0 − ϕ1)2ωn

ϕ0

and the desired estimate follows. ¤
Theorem 4.3. Suppose ψ ∈ C∞([0, 1],H) and ψ̃ ∈ H \ ψ([0, 1]). For ε > 0 by
ϕ denote an element of C∞([0, 1] × [0, 1],H) uniquely determined by the following
property: ϕ(·, t) is an ε-geodesic connecting ψ̃ with ψ(t). Then for ε sufficiently
small

l(ϕ(·, 0)) ≤ l(ψ) + l(ϕ(·, 1)) + Cε,

where C > 0 is independent of ε.
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Proof. The proof is essentially the same as that of Theorem 5 in [8]. Note however
that it is crucial to assume below that ψ̃ /∈ ψ([0, 1]). Set

l1(t) :=
∫ t

0

|ψ̇|dt̃, l2(t) := l(ϕ(·, t)).

It is enough to show that l′1 + l′2 ≥ −Cε on [0, 1]. We clearly have

l′1 = |ψ̇| =
√∫

M

ψ̇2ωn
ψ.

On the other hand,

l2(t) =
∫ 1

0

√
E(s, t) ds,

where

E =
∫

M

ϕ2
sω

n
ϕ

(using the notation ϕs = ∂ϕ/∂s). We have

Es = 2
∫

M

ϕs∇ϕsϕsω
n
ϕ = 2ε

∫

M

ϕsω
n

and

Et =
∫

M

(
2ϕsϕst +

1
2
ϕ2

s∆ϕt

)
ωn

ϕ

= 2
∫

M

ϕs

(
ϕst − 1

2
〈∇ϕs,∇ϕt〉

)
ωn

ϕ

= 2
∫

M

ϕs∇ϕsϕtω
n
ϕ

= 2
∂

∂s

∫

M

ϕsϕtω
n
ϕ − 2

∫

M

ϕt∇ϕsϕsω
n
ϕ

= 2
∂

∂s

∫

M

ϕsϕtω
n
ϕ − 2ε

∫

M

ϕtω
n.

Therefore

l′2 =
1
2

∫ 1

0

E−1/2Et ds

=
∫ 1

0

E−1/2 ∂

∂s

∫

M

ϕsϕtω
n
ϕ ds− ε

∫ 1

0

E−1/2

∫

M

ϕtω
n ds,

and the first term is equal to

[
E−1/2

∫

M

ϕsϕtω
n
ϕ

]1

0

+
1
2

∫ 1

0

E−3/2Es

∫

M

ϕsϕtω
n
ϕ ds.
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Since ϕt(0, ·) = 0, ϕt(1, ·) = ϕ̇, and

E(1, ·) =
∫

M

η2ωn
ϕ,

where η = ϕs(1, ·), from the Schwarz inequality it follows that

l′2 =
(∫

M

η2ωn
ϕ

)−1/2 ∫

M

ηϕ̇ωn
ϕ −R ≥ −

(∫

M

ϕ̇2ωn
ϕ

)1/2

−R,

where

R = ε

∫ 1

0

E−1/2

∫

M

ϕtω
n ds− ε

∫ 1

0

E−3/2

∫

M

ϕsω
n

∫

M

ϕsϕtω
n
ϕ ds.

By Lemma 4.2
E(s, t) ≥ E(ψ̃, ψ(t))− 2εV ||ϕs||.

Since E(ψ̃, ψ(t)) is continuous and positive for t ∈ [0, 1], it follows that for ε suffi-
ciently small

E ≥ c > 0

and thus R ≤ Cε. ¤
We are now in position to show that the geodesic distance is the same as d:

Theorem 4.4. Let ϕε be an ε-geodesic connecting ϕ0, ϕ1 ∈ H. Then

d(ϕ0, ϕ1) = lim
ε→0+

l(ϕε).

Proof. Let ψ ∈ C∞([0, 1],H) be an arbitrary curve connecting ϕ0, ϕ1 ∈ H. We
have to show that

lim
ε→0+

l(ϕε) ≤ l(ψ).

Without loss of generality we may assume that ϕ1 /∈ ψ([0, 1)). Extend ϕε to a
function from C∞([0, 1] × [0, 1),H) in such a way that ϕε(0, ·) ≡ ϕ1, ϕε(1, ·) ≡ ψ
on [0, 1) and ϕε(·, t) is an ε-geodesic for t ∈ [0, 1). By Theorem 4.3 for t ∈ [0, 1) we
have

l(ϕε(·, 0)) ≤ l(ψ|[0,t]) + l(ϕε(·, t)) + C(t)ε.

Since clearly
lim

t→1−
l(ψ|[0,t]) = l(ψ),

it remains to show that
lim

t→1−
lim

ε→0+
l(ϕε(·, t)) = 0.

But it follows immediately from the following:

Lemma 4.5. For an ε-geodesic ϕ connecting ϕ0, ϕ1 ∈ H we have

l(ϕ) ≤
√

V

(
||ϕ0 − ϕ1||L∞(M) +

165 ε

λn

)
,
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where λ > 0 is such that ωϕ0 ≥ λω, ωϕ1 ≥ λω.

Proof. Since ϕ̈ ≥ 0,
ϕ̇(0) ≤ ϕ̇ ≤ ϕ̇(1).

So to estimate |ϕ̇| from above we need to bound ϕ̇(0) from below and ϕ̇(1) from
above. The function

v(ζ) = b|ζ|4 + (a + b− be4) log |ζ| − a− b

satisfies ∂2v/∂ζ∂ζ̄ = 4b|ζ|2, v = −a on |ζ| = 1, and v = 0 on |ζ| = e. We want to
choose a, b so that ϕ1 + v ≤ ϕ on M̃ := M × {1 ≤ |ζ| ≤ e}.

On one hand, if a := ||ϕ0 − ϕ1||L∞(M) then ϕ1 + v ≤ ϕ on ∂M̃ . On the other
hand we have (if b > 0)

(ω + ddc(ϕ1 + v))n+1 = (n + 1)ωn
ϕ1
∧ ddcv ≥ 4b|ζ|2λn(ω + ddc|ζ|2)n+1.

Recall that ϕ solves

(ω + ddcϕ)n+1 = 4ε|ζ|2(ω + ddc|ζ|2)n+1

(where t = log |ζ|). Therefore, if b := ελ−n we will get ωn+1
ϕ1+v ≥ ωn+1

ϕ and ϕ1+v ≤ ϕ

on M̃ by comparison principle. It follows that

ϕ̇(1) ≤ d

dt
(be4t + (a + b− be4)t− a− b)

∣∣
t=1

= (3e4 + 1)
ε

λn
+ ||ϕ0 − ϕ1||L∞(M).

Similarly we can show the lower bound for ϕ̇(0) and the estimate follows from the
definition of l(ϕ). ¤

Theorem 1.2 is deduced immediately from Theorem 4.4 and Lemma 4.2, we thus
get Theorem 1.1.
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