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Abstract
We generalize the inequality being a counterpart of the several complex variables ver-
sion of the Suita conjecture. For this aim higher order generalizations of the Bergman
kernel are introduced. As a corollary some new partial results on the dimension of the
Bergman space on pseudoconvex domains are given. A relation between the problem
of Wiegerinck on possible dimension of the Bergman space of unbounded pseudo-
convex domains in general case and in the case of balanced domains is also shown.
Moreover, some classes of domains where the answer to the problem of Wiegerinck
is positive are given. Additionally, regularity properties of functions involving the
volumes of Azukawa indicatrices are shown.
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1 Introduction

Recall that for the domain D ⊂ C
n , w ∈ D we define the Bergman kernel KD

(restricted to the diagonal) as follows:

KD(w) := sup

{
| f (w)|2 : f ∈ O(D), || f ||2D :=

∫
D

| f |2dV ≤ 1

}
. (1)

We put L2
h(D) := L2(D) ∩ O(D).

Additionally, if KD(z) > 0, then we denote by βD the Bergman metric induced
by the Bergman kernel:

βD(z; X) :=
√√√√ n∑

j,k=1

∂2 log KD(z)

∂z j z̄k
X j Xk, X ∈ C

n . (2)

We also define the Azukawa pseudometric as follows:

AD(w; X) := exp

(
lim sup

λ→0
(GD(w + λX , w) − log |λ|)

)
, (3)

w ∈ D, X ∈ C
n , where GD(·, w) = Gw(·) denotes the pluricomplex Green function

with the pole at w.
Denote also the Azukawa indicatrix at w:

ID(w) := {X ∈ C
n : AD(w; X) < 1}. (4)

Recall that a recently obtained version of the higher dimensional version of the
Suita conjecture (see [7])

KD(w) ≥ 1

V (ID(w))
, w ∈ D, (5)

which holds for any pseudoconvex domain may be formulated as follows:

KD(w) ≥ KID(w)(0), w ∈ D. (6)

Making use of the reasoning as in [4,5,7] we generalize this inequality (see Theorem 2)
which then may be applied to get positive results on non-triviality of the Bergman
space and its infinite dimensionality (see Sect. 3). Thus it gives a partial solution to a
problemofWiegerinck [20].He conjectured that theBergman space of a pseudoconvex
domain in Cn is either zero or infinite dimensional. He showed that the assumption of
pseudoconvexity is necessary and that the conjecture is true for n = 1 (see also [9]).
There are some partial results in higher dimensions: Jucha [14] showed it for some
Hartogs domains and Pflug–Zwonek [18] proved it for balanced domains in C2.
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Generalizations of the Higher Dimensional Suita Conjecture… 1261

The generalization of the Suita conjecture requires the definition of the higher order
Bergman kernels. The introduced objects as well as analogous inequalities have been
recently presented in the case of one dimensional domains in the paper [9].

In Sect. 4 we present other classes of domains where the problem of Wiegerinck is
solved positively.

In our paper we also present some results that are motivated by the objects that were
introduced and studied in the paper [7]; in particular, in Sect. 5 we show regularity
properties of the volume of the Azukawa indicatrix.

2 Higher Dimensional Generalization of the Suita Conjecture

Let H be a homogeneous polynomial on C
n of degree k, H(z) = ∑

|α|=k aαzα . We
define the operator

PH ( f ) :=
∑
|α|=k

aαD
α f , (7)

where f ∈ O(D) for some domain D ⊂ C
n .

For the fixed domain D ⊂ C
n , z ∈ D we define

K H
D (z) := sup

{|PH ( f )(z)|2 : f ( j)(z) = 0,

j = 0, . . . , k − 1, f ∈ L2
h(D), || f ||D ≤ 1

}
. (8)

f ( j)(z) denotes the j th Frechet derivative of f at z—it ismeant here as a homogeneous
polynomial of degree j .

Note that
K 1

D(z) = KD(z). (9)

For X ∈ C
n put HX (z) := X1z1 + · · · + Xnzn . If KD(z) > 0, then

β2
D(w; X) = K HX

D (w)

K 1
D(w)

. (10)

We also put

K (k)
D (w; X) := K

Hk
X

D (w) = sup
{| f (k)(w)(X)|2 : f ∈ L2

h(D),

f ( j)(w) = 0, j = 0, . . . , k − 1, || f ||D ≤ 1
}
. (11)

Note that in the case n = 1 we have K (k)
D (z; 1) = K (k)

D (z), where the expression on
the right-hand side is understood as in the paper [9].

Following the proof of the analogous result in the case of the Bergman kernel we
get the following fundamental properties of K H

D .
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1262 Z. Błocki, W. Zwonek

Proposition 1 • Let F : D → G be a biholomorphic mapping, and let H be a
homogeneous polynomial of degree k ∈ N, w ∈ D. Then

K H
G (F(w)) = K H◦F ′(w)

D (w)| det F ′(w)|2, (12)

where (H ◦ F ′(w))(X) := H(F ′(w)X), X ∈ C
n.

• Let D1, . . . , Dm be domains in C
n, w j ∈ Dj , and let H j be a homogeneous

polynomial on C
n. Then

K H1×...×Hm
D1×...×Dm

(w1, . . . , wm) = K H1
D1

(w1) · · · · · K Hm
Dm

(wm). (13)

• If D is a balanced pseudoconvex domain, H is a homogeneous polynomial onCn,
then

K H
D (0) = |PH (H∗)|2

||H ||2D
=

∣∣∣∑|α|=k |aα|2α!
∣∣∣2∫

D |H(z)|2dV (z)
, (14)

where H∗(z) = ∑
|α|=k āαzα .

To make the presentation simpler we shall often assume that the point (pole of the
Green function) will be w = 0. In such a case we denote Da := e−a{G < a} for
a ≤ 0. Additionally, put D−∞ := ID(0). We shall often use the obvious fact that the
sets {G < a} and Da are linearly isomorphic, −∞ < a ≤ 0.

The properties of the Green function give the equality (Da)b = Da+b for −∞ ≤
a, b ≤ 0. Note also that K H

Da
(0) = e2(n+k)aK H{G<a}(0).

Our main result is the following.

Theorem 2 Let D be a pseudoconvex domain in C
n, w = 0 ∈ D and let H be a

homogeneous polynomial of degree k. Then the function

[ − ∞, 0] � a → K H
Da

(0) (15)

is non-decreasing.
In particular, K H

ID(0)(0) ≤ K H
D (0). Consequently, K (k)

ID(0)(0; X) ≤ K (k)
D (0; X) for

any X ∈ C
n.

Proof We compile the reasoning as in the proof of Theorem 1 in [4], the proof of
Theorem 6.3 in [5] and the proof of Theorem 1 in [7].

If Dj is a sequence of domains in C
n such that Dj ⊂ Dj+1 and D = ⋃

Dj , then
K H

Dj
and GDj decrease to K H

D and GD , respectively. Without loss of generality we
may thus assume that D is a bounded hyperconvex domain.

The properties of the Green function and thus the ones of the sets Da reduce the
problem of the monotonicity of (15) to the proof of the inequality K H

D (0) ≥ K H
Da

(0)
for a fixed a < 0.

The main tool in the proof will be the following L2-estimate for ∂̄ due to Donelly
and Fefferman (see [11] or Theorem 2.2 in [5]): if α is a (0, 1)-form in a pseudoconvex
domain D with coefficients in L2

loc(D) such that ∂̄α = 0, ϕ is plurisubharmonic in
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Generalizations of the Higher Dimensional Suita Conjecture… 1263

D and ψ is of the form ψ = − log(−v), where v is negative plurisubharmonic in D,
then there exists u ∈ L2

loc(D) solving ∂u = α and satisfying the estimate

∫
D

|u|2e−ϕdλ ≤ C
∫
D
he−ϕdλ, (16)

where C > 0 is an absolute constant (in fact the optimal one is C = 4) and h ≥ 0 is
such that iα ∧ α ≤ h i∂∂̄ψ .

Take any f ∈ L2
h({G < a}) with f ( j)(0) = 0, j = 0, . . . , k − 1. We will use the

Donnelly–Fefferman estimate with the following data:

ϕ := 2(n + k + 1)G, ψ := − log(−G), α := ∂̄( f χ ◦ G), (17)

where

χ(t) :=
{
0, t ≥ a,∫ −t
−a

e−(n+k+1)s

s ds, t < a.
(18)

Since

iα ∧ α ≤ | f |2(χ ′ ◦ G)2G2i∂∂̄ψ,

by (16) we can find u with ∂̄u = α and

∫
D

|u|2e−2(n+k+1)Gdλ ≤ C
∫
D

| f |2(χ ′ ◦ G)2G2e−2(n+k+1)Gdλ. (19)

Then the holomorphic function

F := f χ ◦ G − u (20)

satisfies F ( j)(0) = 0 (since near the origin e−2(n+k+1)G ≥ δ|z|−2(n+k+1) for some
δ > 0) and PD,H (F)(0) = χ(−∞)PD,H ( f )(0) = Ei(−(n + k + 1)a)PD,H ( f )(0).
Moreover,

||F ||L2(D) ≤ (χ(−∞) + √
C)|| f ||{G<a}, (21)

which implies that
K H

D (0) ≥ c(n, a, k)K H{G<a}(0), (22)

where c(n, a, k) = Ei(−(n+k+1)a)2

(Ei(−(n+k+1)a)+√
C)2

.

We can now use the tensor power trick: for large m we consider the domain Dm ⊂
C
nm . Using the formulas for the Bergman kernel and the Green function for product

domains and letting m tend to ∞ we will get

K H
D (0) ≥ e2(n+k)aK H{G<a}(0) = K H

Da
(0). (23)

Similarly, as in [7] we note that the continuity of the Azukawa metric (and the exis-
tence of the limit in its definition)—see [21,22]—implies the convergence in the sense
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1264 Z. Błocki, W. Zwonek

of Hausdorff: Da → ID(w) which together with basic properties of the Bergman
functions implies the desired inequality. ��
Remark 3 It would be interesting to verify whether the function

(−∞, 0] � a → log K H
Da

(w) (24)

is convex as it is in the case of H ≡ 1 (see final remark in [6]).

Note that the non-triviality of the space L2
h(D) is equivalent to the fact that for any

w ∈ D there are a k and X such that K (k)
D (w; X) > 0.

The infinite dimensionality of L2
h(D) is equivalent to the existence for any

(equivalently, some) w ∈ D a subsequence (kν) and a sequence (Xν) such that
K (kν )

D (w; Xν) > 0. Therefore, we conclude

Proposition 4 Let D be a pseudoconvex domain in Cn.

• If for some w ∈ D the space L2
h(ID(w)) is not trivial, then so is the space L2

h(D).
• If for somew ∈ D the dimension of L2

h(ID(w)) is infinite, then so is the dimension
of L2

h(D).

In fact, one may also conclude from Theorem 2 a more precise version of Proposi-
tion 4.

Corollary 5 Let D be a pseudoconvex domain in Cn, w ∈ D, −∞ < a ≤ 0. Then

dim(L2
h(ID(w))) ≤ dim(L2

h(Da(w))). (25)

Making use of the result from [18] we get the following partial solution of the
problem of Wiegerinck (see [20]).

Corollary 6 Let D be a pseudoconvex domain in C
2. If for some w ∈ D the space

L2
h(ID(w)) is not trivial, then the dimension of L2

h(D) is infinite.

Note that the non-triviality of the space L2
h(ID(w)) in the case n = 2 is precisely

described in [18].

Remark 7 To answer the problem of Wiegerinck in dimension two it would be then
sufficient to decide what the dimensions of L2

h(D) are in the case when L2
h(ID(w)) =

{0} for all w ∈ D. The solution of that problem seems to be very probable to get.
Perhaps one should start with the solution of the problemwhen AD ≡ 0, orG ≡ −∞?

3 On the Finite Dimensional Bergman Space onDa

Note thatCorollary 5 leaves the problemon themutual relation between the dimensions
of the spaces L2

h(Da) for different a open. Note that the restriction: L2
h(Db) � f →

f (ea−b·)|Da ∈ L2
h(Da), −∞ < a < b ≤ 0 gives the inequality

dim(L2
h(Da)) ≤ dim(L2

h(Db)). (26)
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Generalizations of the Higher Dimensional Suita Conjecture… 1265

In fact, we shall prove that the equality holds.

Proposition 8 Let D be a pseudoconvex domain in C
n, 0 ∈ D. Then for any −∞ <

a ≤ 0 the dimension of L2
h(Da) is the same.

Proof It is sufficient to show that if −∞ < a < 0, then the dimension of L2
h(Da)

is equal to that of L2
h(D). To prove this it is sufficient to show that if we get the

system { f1, . . . , fN } of linearly independent elements of L2
h(Da), then there are

elements F1, . . . , FN from L2
h(D) linearly independent. For the functions fl we

follow a construction from the proof of Theorem 2. First we choose k so big that
the functions f̃l , l = 1, . . . , N , are linearly independent in the space of polynomi-

als, where f̃l(z) := ∑k
m=0

f (m)
l (0)
m! (z), l = 1, . . . , N . Fix now a smooth function

χ : [−∞, 0] → [0, 1] such that χ equals 1 near −∞ and χ(t) = 0, t ≥ a. Now
starting with the functions fl we proceed with the construction of functions Fl as in
the proof of Theorem 2 with ϕ := 2(n + k + 1)G and the mapping χ . The functions
Fl are L2

h functions on D that satisfy the equality
f̃l ≡ F̃l , l = 1, . . . , N , which implies immediately the linear independence of Fl ,

l = 1, . . . , N . ��
Remark 9 Proposition 8 together with Corollary 5 suggests that the equality of dimen-
sions of all Bergman spaces L2

h(Da), −∞ ≤ a ≤ 0 may hold, which in turn would
reduce the problem of Wiegerinck from the general case to that in the class of pseu-
doconvex balanced domains (the set D−∞).

Remark 10 Note that the results presented in this section imply that if L2
h(D) is finite

dimensional, then all the functions lying in L2
h({G < a}), −∞ < a < 0 are the

restrictions of the functions from L2
h(D)—this very special phenomenon is a fact

which may serve as another hint that the problem ofWiegerinck should have a positive
answer.

4 Other Sufficient Conditions for the Positive Solution of the Problem
ofWiegerinck

In this section we shall present two other sufficient conditions on domains that guar-
antee that the domain from the given class will give the positive answer to the problem
of Wiegerinck. It should be noted however that it is probably not so easy to check
whether assumptions of the next two results are satisfied in specific cases of unbounded
domains.

Consequently, we have no examples of domains that would satisfy the assumptions
of next two theorems for which the solution of the problem ofWiegerinck could not be
concluded from other known criteria. Therefore, it would be interesting if one could
find such examples.

Theorem 11 Let D be a pseudoconvex domain in C
n such that for some w ∈ D and

a ≤ 0 the sublevel set {GD(·, w) < a} does not satisfy the Liouville property, that
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1266 Z. Błocki, W. Zwonek

is there exists a bounded non-constant holomorphic function defined there. Then the
Bergman space L2

h(D) is either trivial or infinite dimensional.

Proof Assume that there exists non-zero f ∈ L2
h(D). There exists k ≥ 0 such that

f ( j)(w) = 0 for j = 0, 1, . . . , k−1 but f (k)(w) �= 0.We can also find Q holomorphic
and bounded in {G < a}, where G = GD(·, w), and m ≥ 1 such that Q( j)(w) = 0
for j = 0, 1, . . . ,m − 1 but Q(m)(w) �= 0. For l ≥ 1 define

α := ∂̄(Ql f χ ◦ G) = Ql f χ ′ ◦ G ∂̄G,

where χ ∈ C∞(R,R) is such that χ(t) = 1 for t ≤ b and χ(t) = 0 for t ≥ c, where
b and c are such that b < a < c < 0. Set

ϕ := 2(n + k + lm)G, ψ := − log(−G),

then

i ᾱ ∧ α ≤ |Q|2l | f |2(χ ′ ◦ G)2i∂G ◦ ∂̄G ≤ |Q|2l | f |2(χ ′ ◦ G)2G2i∂∂̄ψ

and by the Donnelly–Fefferman estimate there exists u ∈ L2
loc(D) with ∂̄u = α and

||u||2 ≤
∫
D

|u|2e−ϕdλ

≤ 4
∫
D

|Q|2l | f |2(χ ′ ◦ G)2G2e−2(n+k+lm)Gdλ ≤ C || f ||2. (27)

Set F = Ql f χ ◦G−u. Then F ∈ L2
h(D) and F ( j)(w) = 0 for j = 0, . . . , k+lm−1,

but F (k+lm)(w) �= 0. Since l is arbitrary, it follows that L2
h(D) is infinite dimensional.

��
Theorem 12 Let D be a pseudoconvex domain inCn andw j ∈ D an infinite sequence,
not contained in any analytic subset of D, and such that for every j �= k there exists
t < 0 such that {G j < t} ∩ {Gk < t} = ∅, where G j := GD(·, w j ). Then L2

h(D) is
either trivial or infinite dimensional.

Proof Assume that f ∈ L2
h(D), f �≡ 0. Choosing a subsequence if necessary we may

assume that f (w j ) �= 0 for all j . For every k we want to construct F ∈ L2
h(D) such

that F(w j ) = 0 for j = 1, . . . , k − 1 but F(wk) �= 0. It will then follow that L2
h(D)

is infinite dimensional.
We can find tk < 0 such that {G j < tk}∩ {Gl < tk} = ∅ for j, l = 1, . . . , k, j �= l.

Set G := G1 + · · · + Gk−1 and

α := ∂̄
(
f χ ◦ G

) = f χ ′ ◦ G ∂̄G,

where χ ∈ C∞(R) is such that χ(t) = 0 for t ≤ (k − 1)tk − 2 and χ(t) = 0 for
t ≥ (k − 1)tk − 1. Define the weights

ϕ := 2n(G + Gk), ψ := − log(−G),
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we then have

i ᾱ ∧ α ≤ | f |2G2(χ ′ ◦ G)2i∂∂̄ψ.

By theDonnelly–Fefferman estimate we can find u ∈ L2
loc(D)with ∂̄u = α, satisfying

the estimate

||u||2 ≤
∫
D

|u|2e−ϕdλ ≤ 4
∫
D

| f |2G2(χ ′ ◦ G)2e−ϕdλ.

For every z ∈ D with G(z) < (k − 1)tk there exists j ≤ k − 1 such that G j (z) < tk ,
and therefore Gk ≥ tk on {G ≤ (k − 1)tk − 1}. It follows that ||u|| < ∞ and thus
F := f χ ◦ G − u ∈ L2

h(D). Since e−ϕ is not locally integrable near w1, . . . , wk , we
conclude that F(w1) = · · · = F(wk−1) = 0 and F(wk) = f (wk) (the latter since
G(wk) ≥ (k − 1)tk). ��

5 Regularity of the Volume of the Azukawa Indicatrix

For k ≥ 1 we define the kth order Carathéodory–Reiffen pseudometric as follows:

γ
(k)
D (z; X) := sup

{∣∣∣ f (k)(z)X/k!
∣∣∣1/k : f ( j)(z) = 0, j = 0, . . . , k − 1

}
, (28)

z ∈ D, X ∈ C
n and the supremum is taken over all holomorphic f : D → D where

D is the unit disc in C.
Recall that the bounded domain D ⊂ C

n is called strictly hyperconvex if there are a
bounded domain� ⊂ C

n , a continuous plurisubharmonic function u : � → (−∞, 1)
such that D = {u < 0}, u is exhaustive for � and for all c ∈ [0, 1] the set {u < c} is
connected (see [17]). It is elementary to see that γ (k)

D ≤ AD . In general, the function
AD is upper semicontinuous (see [12]) and in the case of the hyperconvex D even
continuous (see [21]).

It follows directly from the definition that the functions D × C
n � (z; X) →

γ
(k)
D (z; X) are logarithmically plurisubharmonic. Recall that for a strictly hypercon-

vex D and for any z ∈ D we have the convergence limk→∞ γ
(k)
D (z; X) = AD(z; X)

for almost all X ∈ C
n (Theorem 1 in [17]). Consequently, for strictly hyperconvex

domain D we get that the function D × C
n � (z; X) → AD(z; X) is logarithmically

plurisubharmonic. Since any pseudoconvex domain D can be exhausted by an increas-
ing sequence of strictly hyperconvex domains (Dν)ν , the Azukawa pseudometric AD

is the decreasing limit limν→∞ ADν we deduce the following

Proposition 13 Let D be a pseudoconvex domain in Cn. Then log AD is plurisubhar-
monic (as a function defined on D × C

n).

For the pseudoconvex domain D ⊂ C
n define the following pseudoconvex (see e.

g. [13] and use the logarithmic plurisubharmonicity of AD) Hartogs domain with the
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1268 Z. Błocki, W. Zwonek

basis D and balanced fibers

�D := {(z; X) ∈ D × C
n : AD(z; X) < 1}. (29)

Consequently, making use of Theorem 1.4 from [3] (�D(z) = ID(z)) we get the
following result.

Theorem 14 Let D be a pseudoconvex domain in Cn then the function

D � z → − log V (ID(z)) (30)

is plurisubharmonic.

It is natural to ask the question on the logarithmic convexity of AD in the case when
D is convex. It turns out that the answer is positive.

Theorem 15 Let D be a convex domain in Cn. Then the function

D � z → − log V (ID(z)) (31)

is convex.

Proof Due to the Lempert theorem (see e. g. [16])) we have the equality AD = κD ,
where κD is the Kobayashi pseudometric of D. Without loss of generality we may
assume that D is bounded. Let t ∈ [0, 1], w, z ∈ D. We claim that t ID(w) + (1 −
t)ID(z) ⊂ ID(tw + (1 − t)z). Actually, let X ∈ ID(w), Y ∈ ID(z). Then there are
analytic discs f , g : D → D such that f (0) = w, g(0) = z, f ′(0) = X , g′(0) = Y .
Consequently, the mapping h := t f + (1− t)g maps D into D, h(0) = tw + (1− t)z,
h′(0) = t X + (1 − t)Y , so t X + (1 − t)Y ∈ ID(tw + (1 − t)z).

It follows from the Brunn–Minkowski inequality that the Lebesgue measure is
logarithmically concave (see e. g. [19]); therefore,

V (ID(tw + (1 − t)z) ≥ V (t ID(w) + (1 − t)ID(z))

≥ V (ID(w))t V (ID(z))1−t (32)

which finishes the proof. ��
The higher dimensional Suita conjecture (i. e. the inequality (5)) may also be pre-

sented in the following way:

FD(w) := n
√
KD(w) · V (ID(w)) ≥ 1, w ∈ D. (33)

Note that the function FD has the following properties:

• F is biholomorphically invariant,
• if D is a bounded pseudoconvex balanced domain, then FD(0) = 1.
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The explicit formulas for the function FD (see [7,8]) may be used to study the
boundary behavior of FD . Recently, the case of the strongly pseudoconvex domains
was completely solved.

Proposition 16 (see [1]) Let D be a strongly pseudoconvex domain in C
n. Then

limz→∂D FD(z) = 1.

Note that the above property follows directly from a recent result from [10] (see
Theorem 4.1 in [15]).

The recent paper [2] is devoted to the study of the boundary behavior of the (formally
slightly modified) function FD on a wider class of domains.
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