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Theorem (Pogorelov, 1971).
Ω ⊂⊂ Rn, u = 0 on ∂Ω, f ∈ C∞(Ω) ⇒ u ∈ C∞(Ω)
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Theorem (Urbas, 1988). If n ≥ 3 and
• either u ∈ W 2,p

loc for some p > n(n− 1)/2
• or u ∈ C1,α for some α > 1− 2/n
then

f ∈ C∞ ⇒ u ∈ C∞.
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Theorem (B.-S. Dinew). If u ∈ W 2,p
loc for some

p > n(n− 1) then

f ∈ C∞ ⇒ u ∈ C∞.



More precisely we have

Theorem. Assume Ω ⊂ Cn, n ≥ 2,
u ∈ PSH ∩W 2,p(Ω) for some p > n(n− 1) solves

det(uziz̄j ) = f > 0,

where f ∈ C1,1(Ω).
Then ∆u ∈ L∞loc(Ω) and for Ω′ ⊂⊂ Ω

sup
Ω′

∆u ≤ C,

where C depends only on n, p, ||f ||C1,1(Ω), infΩ f ,
||∆u||Lp(Ω) and dist(Ω′, ∂Ω).
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Fix 1 < q < p/(n(n− 1)). Since ||∆u||p is under control,
it follows that ||uij̄ ||p and ||uij̄ ||p/(n−1) are as well. Set

α = 1 +
p

qn
, β = 2

(
1 +

qn

p

)
.

Then

||(uij̄wij̄)−||qn ≤ C4(1 + (sup
B

w)1−2/β),

where f− := −min(f, 0).



Solve det(vij̄) = ((uij̄wij̄)−)n, v = 0 on ∂B. Then

sup
B

w ≤ C5 sup
B

(−v)

≤ C6||det(vij̄)||1/n
q

= C6||(uij̄wij̄)−||qn

≤ C7(1 + (sup
B

w)1−2/β)

by Kołodziej’s estimate.



Solve det(vij̄) = ((uij̄wij̄)−)n, v = 0 on ∂B. Then

sup
B

w ≤ C5 sup
B

(−v)

≤ C6||det(vij̄)||1/n
q

= C6||(uij̄wij̄)−||qn

≤ C7(1 + (sup
B

w)1−2/β)

by Kołodziej’s estimate. Therefore

w = (1− |z|2)α(∆u)β ≤ C8.
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For u which is just in W 2,p we consider

T = Tεu =
n + 1

ε2
(uε − u),

where

uε(z) =
1

λ(B(z, ε))

∫
B(z,ε)

u dλ.

Then Tεu → ∆u weakly. One can show that

uij̄Tij̄ ≥ nf−1/nTε(f1/n) ≥ −C9

and now we can work as before with T instead of ∆u.
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Theorem (S.Dinew-X. Zhang-X.W. Zhang). 0 < α < 1.
For u ∈ C1,1 we have

f ∈ Cα ⇒ u ∈ C2,α.

It would useful to weaken the assumption to ∆u ∈ L∞loc.
For this the following version of Bedford-Taylor’s interior
regularity would be sufficient:

Assume v is psh and has bounded Laplacian near B̄. Let
u be the psh solution of det(uij̄) = 1, u = v on ∂B.
Then ∆u ∈ L∞loc(B).


