Local Regularity of the Monge-Ampère Equation

Zbigniew Błocki
(Jagiellonian University, Kraków, Poland)

http://gamma.im.uj.edu.pl/~blocki

Reykjavik, August 23, 2010
We are interested in local regularity of
(RMA) \[\det(u_{x_ix_j}) = f > 0 \]
(for convex solutions in domains in \(\mathbb{R}^n \)) and
(CMA) \[\det(u_{z_i\bar{z}_j}) = f > 0 \]
(for continuous psh solutions in domains in \(\mathbb{C}^n \)).
We are interested in local regularity of

(RMA) \[\det(u_{x_i x_j}) = f > 0 \]

(for convex solutions in domains in \(\mathbb{R}^n \)) and

(CMA) \[\det(u_{z_i \bar{z}_j}) = f > 0 \]

(for continuous psh solutions in domains in \(\mathbb{C}^n \)).

Remark. 1. In a way (RMA) is a special case of (CMA).
We are interested in local regularity of
\[(RMA) \quad \det(u_{x_ix_j}) = f > 0 \]
(for convex solutions in domains in \(\mathbb{R}^n\)) and
\[(CMA) \quad \det(u_{z_i\bar{z}_j}) = f > 0 \]
(for continuous psh solutions in domains in \(\mathbb{C}^n\)).

Remark. 1. In a way (RMA) is a special case of (CMA).
 2. Makes no sense to allow \(f \geq 0\).
We are interested in local regularity of

(RMA) \[\det(u_{x_i x_j}) = f > 0 \]
(for convex solutions in domains in \mathbb{R}^n) and

(CMA) \[\det(u_{z_i \bar{z}_j}) = f > 0 \]
(for continuous psh solutions in domains in \mathbb{C}^n).

Remark. 1. In a way (RMA) is a special case of (CMA).
2. Makes no sense to allow $f \geq 0$.

Natural question: $f \in C^\infty \Rightarrow u \in C^\infty$?
Real Monge-Ampère Equation
Real Monge-Ampère Equation

Example (Pogorelov, 1971). \(u(x) = (x_1^2 + 1)|x'|^{2\beta}, \beta \geq 0, \) where \(x' = (x_2, \ldots, x_n). \)
Real Monge-Ampère Equation

Example (Pogorelov, 1971). Let \(u(x) = (x_1^2 + 1)|x'|^{2\beta}, \beta \geq 0 \), where \(x' = (x_2, \ldots, x_n) \). Then

\[
\det(u_{x_ix_j}) = c(1+x_1^2)^{n-2} \left[(2\beta-1)-(2\beta+1)x_1^2 \right] |x'|^{2(\beta n+1-n)}.
\]
Real Monge-Ampère Equation

Example (Pogorelov, 1971). \(u(x) = (x_1^2 + 1)|x'|^{2\beta} \), \(\beta \geq 0 \), where \(x' = (x_2, \ldots, x_n) \). Then

\[
\text{det}(u_{x_ix_j}) = c(1+x_1^2)^{n-2} \left[(2\beta-1)-(2\beta+1)x_1 \right] |x'|^{2(\beta n+1-n)}.
\]

• \(u \) is convex near the origin iff \(\beta > 1/2 \).
Example (Pogorelov, 1971). \(u(x) = (x_1^2 + 1)|x'|^{2\beta}, \beta \geq 0, \)
where \(x' = (x_2, \ldots, x_n) \). Then
\[
\det(u_{xixj}) = c(1+x_1^2)^{n-2} \left[(2\beta-1)-(2\beta+1)x_1^2 \right] |x'|^{2(\beta n+1-n)}.
\]

- \(u \) is convex near the origin iff \(\beta > 1/2 \)
- \(\det(u_{xixj}) \) is smooth and \(> 0 \) iff \(\beta = 1 - 1/n. \)
Real Monge-Ampère Equation

Example (Pogorelov, 1971). $u(x) = (x_1^2 + 1)|x'|^{2\beta}$, $\beta \geq 0$, where $x' = (x_2, \ldots, x_n)$. Then

$$\det(u_{x_ix_j}) = c(1+x_1^2)^{n-2}[(2\beta-1)-(2\beta+1)x_1^2]|x'|^{2(\beta n+1-n)}.$$

• u is convex near the origin iff $\beta > 1/2$
• $\det(u_{x_ix_j})$ is smooth and > 0 iff $\beta = 1 - 1/n$.

Example only works for $n \geq 3!!!!$
Real Monge-Ampère Equation

Example (Pogorelov, 1971). \(u(x) = (x_1^2 + 1)|x'|^{2\beta}, \beta \geq 0, \)
where \(x' = (x_2, \ldots, x_n). \) Then
\[
\det(u_{x_ix_j}) = c(1+x_1^2)^{n-2} \left[(2\beta-1)-(2\beta+1)x_1^2\right]|x'|^{2(\beta n + 1 - n)}.
\]
\(\bullet \) \(u \) is convex near the origin iff \(\beta > 1/2 \)
\(\bullet \) \(\det(u_{x_ix_j}) \) is smooth and \(> 0 \) iff \(\beta = 1 - 1/n. \)

Example only works for \(n \geq 3 \)!!!!

Theorem. \(n = 2, \ f \in C^\infty \Rightarrow u \in C^\infty \)
Example (Pogorelov, 1971). $u(x) = (x_1^2 + 1)|x'|^{2\beta}$, $\beta \geq 0$, where $x' = (x_2, \ldots, x_n)$. Then

$$\det(u_{xi}x_j) = c(1+x_1^2)^{n-2}[(2\beta-1)-(2\beta+1)x_1^2]|x'|^{2(\beta n+1-n)}.$$

- u is convex near the origin iff $\beta > 1/2$
- $\det(u_{xi}x_j)$ is smooth and > 0 iff $\beta = 1 - 1/n$.

Example only works for $n \geq 3$!!!
Real Monge-Ampère Equation

Example (Pogorelov, 1971). \(u(x) = (x_1^2 + 1)|x'|^{2\beta}, \beta \geq 0, \)
where \(x' = (x_2, \ldots, x_n). \) Then

\[
\det(u_{x_i x_j}) = c(1+x_1^2)^{n-2} \left[(2\beta-1)-(2\beta+1)x_1^2 \right] |x'|^{2(\beta n+1-n)}.
\]

- \(u \) is convex near the origin iff \(\beta > 1/2 \)
- \(\det(u_{x_i x_j}) \) is smooth and > 0 iff \(\beta = 1 - 1/n. \)

Example only works for \(n \geq 3 \)!!!!

Theorem. \(n = 2, \ f \in C^\infty \Rightarrow u \in C^\infty \)

Theorem (Aleksandrov, 1942).
\(n = 2, \ \det(u_{x_i x_j}) \geq c > 0 \Rightarrow u \) is strictly convex

Theorem (Pogorelov, 1971).
\(\Omega \subset\subset \mathbb{R}^n, \ u = 0 \text{ on } \partial \Omega, \ f \in C^\infty(\Omega) \Rightarrow u \in C^\infty(\Omega) \)
Coming back to Pogorelov’s example \((n \geq 3)\):

\[
 u = (x_1^2 + 1)|x'|^{2(1 - 1/n)},
\]

so that \(f = c(1 + x_1^2)^{n-2}\).
Coming back to Pogorelov’s example ($n \geq 3$):

$$u = (x_1^2 + 1)|x'|^{2(1-1/n)},$$

so that $f = c(1 + x_1^2)^{n-2}$. Then

$$u \in W^{2,p}_{loc} \iff p < \frac{1}{2}n(n - 1)$$

and

$$u \in C^{1,\alpha} \iff \alpha \leq 1 - \frac{2}{n}.$$
Coming back to Pogorelov’s example ($n \geq 3$):

$$u = (x_1^2 + 1)|x'|^{2(1-1/n)},$$

so that $f = c(1 + x_1^2)^{n-2}$. Then

$$u \in W^{2,p}_{loc} \iff p < \frac{1}{2}n(n - 1)$$

and

$$u \in C^{1,\alpha} \iff \alpha \leq 1 - \frac{2}{n}.$$

Theorem (Urbas, 1988). If $n \geq 3$ and

- either $u \in W^{2,p}_{loc}$ for some $p > n(n - 1)/2$
- or $u \in C^{1,\alpha}$ for some $\alpha > 1 - 2/n$

then

$$f \in C^\infty \implies u \in C^\infty.$$
Complex Monge-Ampère Equation
Complex Monge-Ampère Equation

Example. \(u(z) = (1 + |z_1|^2)|z'|^{2(1-1/n)} \) is psh in \(\mathbb{C}^n \),
Example. $u(z) = (1 + |z_1|^2)|z'|^{2(1 - 1/n)}$ is psh in \mathbb{C}^n,
$$\det(u_{z_i \bar{z}_j}) = c(1 + |z_1|^2)^{n-2}.$$
Complex Monge-Ampère Equation

Example. $u(z) = (1 + |z_1|^2)|z'|^{2(1-1/n)}$ is psh in \mathbb{C}^n,
$$\det(u_{zi \bar{z}_j}) = c(1 + |z_1|^2)^{n-2}.$$

In particular, $u(z_1, z_2) = 2(1 + |z_1|^2)|z_2|$ satisfies $\det(u_{zi \bar{z}_j}) = 1$.
Complex Monge-Ampère Equation

Example. \(u(z) = (1 + |z_1|^2)|z'|^{2(1-1/n)} \) is psh in \(\mathbb{C}^n \),
\[
\det(u_{z_i \bar{z}_j}) = c(1 + |z_1|^2)^{n-2}.
\]
In particular, \(u(z_1, z_2) = 2(1 + |z_1|^2)|z_2| \) satisfies
\[
\det(u_{z_i \bar{z}_j}) = 1.
\]

No two-dimensional phenomenon in the complex case!
Complex Monge-Ampère Equation

Example. \(u(z) = (1 + |z_1|^2)|z'|^{2(1-1/n)} \) is psh in \(\mathbb{C}^n \),

\[\det(u_{z_i \bar{z}_j}) = c (1 + |z_1|^2)^{n-2}. \]

In particular, \(u(z_1, z_2) = 2(1 + |z_1|^2)|z_2| \) satisfies
\[\det(u_{z_i \bar{z}_j}) = 1. \]

No two-dimensional phenomenon in the complex case!

\[u \in W^{2,p}_{loc} \iff p < n(n - 1), \quad u \in C^{1,\alpha} \iff \alpha \leq 1 - \frac{2}{n}. \]
Complex Monge-Ampère Equation

Example. \(u(z) = (1 + |z_1|^2)|z'|^{2(1-1/n)} \) is psh in \(\mathbb{C}^n \),
\[
\det(u_{z_i \bar{z}_j}) = c(1 + |z_1|^2)^{n-2}.
\]
In particular, \(u(z_1, z_2) = 2(1 + |z_1|^2)|z_2| \) satisfies
\[
\det(u_{z_i \bar{z}_j}) = 1.
\]

No two-dimensional phenomenon in the complex case!

\[
u \in W^{2,p}_{loc} \iff p < n(n-1), \quad u \in C^{1,\alpha} \iff \alpha \leq 1 - \frac{2}{n}.
\]

Theorem (B.-S. Dinew). If \(u \in W^{2,p}_{loc} \) for some \(p > n(n-1) \) then
\[
f \in C^{\infty} \Rightarrow u \in C^{\infty}.
\]
More precisely we have

Theorem. Assume \(\Omega \subset \mathbb{C}^n, n \geq 2, \)

\(u \in PSH \cap W^{2,p}(\Omega) \) for some \(p > n(n - 1) \) solves

\[
\det(u_{\bar{z}_i z_j}) = f > 0,
\]

where \(f \in C^{1,1}(\Omega). \)

Then \(\Delta u \in L^\infty_{loc}(\Omega) \) and for \(\Omega' \subset \subset \Omega \)

\[
\sup_{\Omega'} \Delta u \leq C,
\]

where \(C \) depends only on \(n, p, \| f \|_{C^{1,1}(\Omega)}, \inf_{\Omega} f, \| \Delta u \|_{L^p(\Omega)} \) and \(\text{dist}(\Omega', \partial \Omega). \)
Sketch of proof. Assume $u \in C^4$.
Sketch of proof. Assume $u \in C^4$. Then

$$u^{ij}(\Delta u)_{ij} \geq \Delta (\log f) \geq -C_1.$$
Sketch of proof. Assume \(u \in C^4 \). Then
\[
\frac{u^i}{\bar{j}} (\Delta u)_{i\bar{j}} \geq \Delta (\log f) \geq -C_1.
\]
Set \(w := (1 - |z|^2) \alpha (\Delta u) \beta, \alpha, \beta \geq 2 \).
Sketch of proof. Assume $u \in C^4$. Then

$$u^{ij}(\Delta u)_{ij} \geq \Delta (\log f) \geq -C_1.$$

Set $w := (1 - |z|^2)^{\alpha}(\Delta u)^{\beta}$, $\alpha, \beta \geq 2$. After some computations we will get

$$u^{ij}w_{ij} \geq -C_2(\Delta u)^{\alpha-1} - C_3w^{1-2/\beta}(\Delta u)^{2\alpha/\beta} \sum_{i,j} |u^{ij}|.$$
Sketch of proof. Assume $u \in C^4$. Then

$$u^{ij}(\Delta u)_{ij} \geq \Delta (\log f) \geq -C_1.$$

Set $w := (1 - |z|^2)^\alpha (\Delta u)^\beta$, $\alpha, \beta \geq 2$. After some computations we will get

$$u^{ij} w_{ij} \geq -C_2 (\Delta u)^{\alpha - 1} - C_3 w^{1-2/\beta} (\Delta u)^{2\alpha/\beta} \sum_{i,j} |u^{ij}|.$$

Fix $1 < q < p/(n(n-1))$.
Sketch of proof. Assume $u \in C^4$. Then

$$u^{ij} (\Delta u)_{ij} \geq \Delta (\log f) \geq -C_1.$$

Set $w := (1 - |z|^2)^\alpha (\Delta u)^\beta$, $\alpha, \beta \geq 2$. After some computations we will get

$$u^{ij} w_{ij} \geq -C_2 (\Delta u)^{\alpha-1} - C_3 w^{1-2/\beta} (\Delta u)^{2\alpha/\beta} \sum_{i,j} |u^{ij}|.$$

Fix $1 < q < p/(n(n-1))$. Since $\|\Delta u\|_p$ is under control, it follows that $\|u_{ij}\|_p$ and $\|u^{ij}\|_{p/(n-1)}$ are as well.
Sketch of proof. Assume $u \in C^4$. Then

$$u^{ij}(\Delta u)^{i\bar{j}} \geq \Delta (\log f) \geq -C_1.$$

Set $w := (1 - |z|^2)\alpha (\Delta u)^\beta$, $\alpha, \beta \geq 2$. After some computations we will get

$$u^{i\bar{j}} w^{i\bar{j}} \geq -C_2 (\Delta u)^{\alpha - 1} - C_3 w^{1 - 2/\beta} (\Delta u)^{2\alpha/\beta} \sum_{i,j} |u^{i\bar{j}}|.$$

Fix $1 < q < p/(n(n - 1))$. Since $\|\Delta u\|_p$ is under control, it follows that $\|u^{i\bar{j}}\|_p$ and $\|u^{i\bar{j}}\|_{p/(n-1)}$ are as well. Set

$$\alpha = 1 + \frac{p}{qn}, \quad \beta = 2(1 + \frac{qn}{p}).$$

Then

$$\|(u^{i\bar{j}} w^{i\bar{j}})_{-}\|_{qn} \leq C_4 (1 + (\sup_{B} w)^{1-2/\beta}),$$

where $f_- := -\min(f, 0)$.
Solve \(\det(v_{ij}) = ((u^{ij}w_{ij})^-)^n \), \(v = 0 \) on \(\partial B \). Then

\[
\sup_B w \leq C_5 \sup_B (-v) \\
\leq C_6 \| \det(v_{ij}) \|_q^{1/n} \\
= C_6 \| (u^{ij}w_{ij})^- \|_{qn} \\
\leq C_7 (1 + (\sup_B w)^{1-2/\beta})
\]

by Kołodziej’s estimate.
Solve $\det(v_{ij}) = ((u^{ij}w_{ij})_-)^n$, $v = 0$ on ∂B. Then

$$\sup_B w \leq C_5 \sup_B (-v)$$

$$\leq C_6 \| \det(v_{ij}) \|_q^{1/n}$$

$$= C_6 \| (u^{ij}w_{ij})_- \|_{qn}$$

$$\leq C_7 (1 + (\sup_B w)^{1-2/\beta})$$

by Kołodziej’s estimate. Therefore

$$w = (1 - |z|^2)^\alpha (\Delta u)^\beta \leq C_8.$$
For u which is just in $W^{2,p}$ we consider

$$T = T_\varepsilon u = \frac{n + 1}{\varepsilon^2} (u_\varepsilon - u),$$

where

$$u_\varepsilon(z) = \frac{1}{\lambda(B(z, \varepsilon))} \int_{B(z,\varepsilon)} u \, d\lambda.$$

Then $T_\varepsilon u \to \Delta u$ weakly.
For u which is just in $W^{2,p}$ we consider

$$T = T_\varepsilon u = \frac{n + 1}{\varepsilon^2} (u_\varepsilon - u),$$

where

$$u_\varepsilon(z) = \frac{1}{\lambda(B(z, \varepsilon))} \int_{B(z, \varepsilon)} u \, d\lambda.$$

Then $T_\varepsilon u \to \Delta u$ weakly. One can show that

$$u^{ij}T_{ij} \geq nf^{-1/n}T_\varepsilon(f^{1/n}) \geq -C_9$$

and now we can work as before with T instead of Δu.
Theorem (S. Dinew-X. Zhang-X.W. Zhang). \(0 < \alpha < 1\). For \(u \in C^{1,1}\) we have
\[
f \in C^\alpha \Rightarrow u \in C^{2,\alpha}.
\]
Theorem (S. Dinew-X. Zhang-X.W. Zhang). $0 < \alpha < 1$. For $u \in C^{1,1}$ we have

$$f \in C^\alpha \Rightarrow u \in C^{2,\alpha}.$$

It would useful to weaken the assumption to $\Delta u \in L^\infty_{loc}$.
Theorem (S. Dinew-X. Zhang-X.W. Zhang). $0 < \alpha < 1$. For $u \in C^{1,1}$ we have

$$f \in C^\alpha \Rightarrow u \in C^{2,\alpha}.$$

It would useful to weaken the assumption to $\Delta u \in L^\infty_{loc}$. For this the following version of Bedford-Taylor’s interior regularity would be sufficient:

Assume v is psh and has bounded Laplacian near \bar{B}. Let u be the psh solution of $\det(u_{i\bar{j}}) = 1$, $u = v$ on ∂B. Then $\Delta u \in L^\infty_{loc}(B)$.