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Natural question: f € C®° = u e C®7?
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Theorem (Aleksandrov, 1942).
n =2, det(ug;) > c>0 = wuis strictly convex

Theorem (Pogorelov, 1971).
QCCR", u=00n09Q, feC® ) = uecC>®)
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Coming back to Pogorelov's example (n > 3):

u= (a3 + 1A,

so that f = ¢(1 +23)" 2. Then

1
ue W o p<§n(n—1)

loc

and 5
weC® & a<1- =,
n

Theorem (Urbas, 1988). If n > 3 and
o either u € W? for some p > n(n — 1)/2
e or u € Ch for some a > 1—2/n
then
feC® = uweC™.
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Complex Monge-Ampére Equation

Example. u(z) = (1 + |21[)|2'|**=Y™) is psh in C™,
detuzys,) = (1 + 122,
In particular, u(z1, 29) = 2(1 + |21|?)| 22| satisfies

det(uz,z;) = 1.

No two-dimensional phenomenon in the complex case!

2
wueWol & p<nn-1), weC™ & a<l-".
n

Theorem (B.-S. Dinew). If u € VVZQOf for some
p > n(n —1) then

felC® = ueC™.



More precisely we have

Theorem. Assume 2 C C", n > 2,

u € PSH NW?2P(Q) for some p > n(n — 1) solves
det(uzigj) = f > 0,

where f € C11(Q).

Then Au € L () and for Q' cC Q

loc
sup Au < C,
Q/

where C' depends only on n, p, ”f”cl,l(ﬂ), infq f,
||Au||Lp(Q) and dist (Y, 09).
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Sketch of proof. Assume u € C*. Then
u(Au);z > Allog f) > —Ch.

Set w:= (1 — [2]?)¥(Au)?, o, 3 > 2. After some
computations we will get

u’;wﬁ > —Cy(Au)* ! — Cyw'=2/P(Au)?/B Z .
/[:7‘].
Fix 1 < g <p/(n(n—1)). Since |[Aul||, is under control,
it follows that ||u||, and [[u][,/(,—1) are as well. Set
a=1+L2 g2+
qan p

Then

(" wi)~llgn < Ca(1 + (sup w)'~#0),

where f_ := —min(f,0).
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Solve det(v;3) = ((uw;;)-)", v =0 on OB. Then

supw < Cjsup(—v)
B B
< Gs| det(“i})”é/n
= Coll(u"w;z)~lon
< Cr(1+ (Slép w)'=2/9)
by Kotodziej's estimate. Therefore
w=(1-|z[)%Au)’ < Cs.



For u which is just in W2P we consider

n—+1

T=Tu=—(ue — u),

3

).
Ue(2) = ———— ud.
) =3B Joes
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For u which is just in W2P we consider

n—+1

T=Tu=—(ue — u),

3

1
ue(z) = / wd.
) )‘(B(ng)) B(z,e)
Then Tou — Awu weakly. One can show that

ul T > nf VML (f7) > ~Co

and now we can work as before with 7" instead of Auw.

where
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Theorem (S. Dinew-X. Zhang-X.W. Zhang). 0 < o < 1.
For u € C1 we have

feCc® = ueC*,
It would useful to weaken the assumption to Au € L7 .
For this the following version of Bedford-Taylor's interior
regularity would be sufficient:

Assume v is psh and has bounded Laplacian near B. Let
u be the psh solution of det(u;;) =1, u=1v on 9B.
Then Au € LY (B).

loc



