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Abstract. We prove a quantitative lower bound for the Diederich-Fornæss index for
bounded pseudoconvex domains in Cn with smooth boundary. Using pluripotential
theory we also characterize the Diederich-Fornæss exponents for possibly nonsmooth
plurisubharmonic defining functions in worm domains, generalizing a result of B. Liu.

1. Introduction

Let Ω be a bounded domain in Cn with C2 boundary. We say that ρ is its defining
function if ρ ∈ C2(Ω), ρ < 0 in Ω and ρ = 0, ∇ρ ̸= 0 on ∂Ω. It is well known that Ω is
pseudoconvex if and only if

(1)
∑
j,k

ρzj z̄k(z)wjw̄k ≥ 0

for all z ∈ ∂Ω and w ∈ Cn satisfying∑
j

ρzj(z)wj = 0.

For n = 2 this is equivalent to the following inequality on ∂Ω

ρz1z̄1|ρz2|2 − 2Re
(
ρz1z̄2ρz̄1ρz2

)
+ ρz2z̄2|ρz1|2 ≥ 0.

Of course, if a defining function is plurisubhmarmonic (psh) in Ω (that is (1) holds
for all z ∈ Ω and w ∈ Cn) then Ω is pseudoconvex. The converse however does not
hold in general. This was demonstrated by the famous example of the worm domain
constructed by Diederich-Fornæss [3]. This kind of phenomenon seems to be very special
for several complex variables: it is known that it does not appear neither in convex
analysis (see e.g. [7]) nor in the theory of p-convex domains, as recently shown in [5].
On the other hand, Diederich-Fornæss [2] proved that for any bounded pseudoconvex
domain with C2 boundary there exists a defining ρ̃ and b > 0 such that −(−ρ̃)b is psh
in Ω. Such a b is called the Diederich-Fornæss (DF) exponent and their supremum the
DF index of Ω. It will be denoted by η2(Ω). If we restrict ourselves to domains and
defining functions of class Ck, k = 2, 3, . . . ,∞, then ηk(Ω) will be the corresponding
DF index.
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One of the key steps in the proof of this result in [2] was the estimate

(2) δww̄(z) ≤ C|δw(z)||w|, w ∈ Cn,

for z ∈ Ω near ∂Ω and some positive constant C. Here

(3) δ(z) = δΩ(z) = dist (z, ∂Ω), z ∈ Ω,

and
fw =

∑
j

fzjwj, fw̄ =
∑
j

fz̄j w̄j,

so that
fww̄ =

∑
j,k

fzj z̄kwjw̄k.

Our first result is the following quantitative version of the Diederich-Fornæss theo-
rem:

Theorem 1. Assume that Ω is a bounded pseudoconvex domain in Cn with C2 bound-
ary. Let C > 0 be such that (2) holds and R > 0 such that Ω ⊂ B(z0, R) for some
z0 ∈ Cn. Then (1 + CR)−2 is a DF exponent for Ω.

If the boundary is Ck then we obtain a Ck defining function with this exponent.
Theorem 1 thus gives

(4) ηk(Ω) ≥
1

(1 + CΩ)2
,

where
CΩ := diamΩ inf C/2

and the infimum is being taken over any neighborhood of ∂Ω where δ is Ck and C that
satisfies (2) there. Note that CΩ is invariant under linear transformations. It is also
clear that CΩ = 0 if Ω is strongly pseudoconvex.

Classical examples of domains with arbitrary small DF indices are the worm do-
mains defined and investigated by Diederich-Fornæss in [3]. For µ > 0 they are given
by (see also [9]):

Ωµ :=
{
z ∈ C2 :

∣∣z1 − ei log |z2|
∣∣2 < 1− η(log |z2|)

}
where η is C∞, nonnegative, convex on R and such that {η = 0} = [−µ, µ]. This
ensures that Ω is bounded pseudoconvex in C2 with C∞ boundary, see [9] for details.
It was proved in [3] that for k ≥ 3 we have ηk(Ωµ) ≤ π/2µ. Liu [10] showed that in fact
ηk(Ωµ) = π/(π+2µ) for k ≥ 3. The reason why both papers had to assume that k ≥ 3
is that if ρ, ρ̃ are two Ck defining functions then ρ̃/ρ is of class Ck−1 and this regularity
cannot be improved in general and the methods require that is ratio is C2.

We will improve these results to C2 defining functions and even to more general
psh ones using some pluripotential theory in worm domains. The concept of the DF
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exponent and index can be generalized to nonsmooth functions as follows. Recall that
a function is psh if its complex Hessian is nonnegative in the weak sense. This implies
that u is in particular upper semi-continuous. A negative psh function u in Ω vanishing
on the boundary will be called a psh defining function for Ω. In this case we will say
that b is a psh DF exponent for Ω if near the boundary

(5) |u| ≤ CδbΩ

for some C > 0. It is clear that then (5) also holds for an arbitrary psh defining function
for Ω which is maximal near the boundary, for example the pluricomplex Green function
of Ω with some fixed pole. Therefore, b is a psh DF exponent if and only if (5) holds
near the boundary for the pluricomplex Green function of Ω for some (equivalently,
any) pole in Ω.

From [2] (or Theorem 1) it follows that for bounded pseudoconvex domains with
C2 boundary there are psh defining functions satisfying (5) and even the corresponding
lower bound. This was used by Herbort [8] to prove that then the pluricomplex Green
function converges locally uniformly to 0 as the pole converges to the boundary (see also
[1]). This, together with corresponding quantitative estimates for the Green function
lead to lower bounds for the Bergman distance in such domains, see [4] and [1]. It
was later proved by Harrington [6] that such a psh defining function exists in bounded
pseudoconvex domains with Lipschitz boundary. Using that one sees that estimates
from [8] and [1] immediately generalize from C2 to Lipschitz boundaries.

We will prove that for the worm domains the indices for psh defining functions and
C3 defining functions are the same:

Theorem 2. If b is a psh DF exponent for Ωµ then b ≤ π/(π + 2µ).

We do not know if the limit value can be attained. We conjecture that, similarly as
for C3 defining functions (see Theorem 7 below), this is not possible. Equivalently, this
would mean that the Green function GΩµ(·, w) does not satisfy (5) near the boundary
for b = π/(π + 2µ) for some (any) w ∈ Ωµ. In the proof of Theorem 2 below we only
show it on a certain complex disk in Ωµ.

More generally, we conjecture that for any bounded pseudoconvex Ω with Ck bound-
ary, k, 2, 3, . . . ,∞, if 1 is not a DF exponent then the set of DF exponents for Ck defining
functions is an open interval. We expect it also for psh DF exponents.

Using Theorem 2 we now see that previously mentioned results from [3] and [10]
also hold for C2 defining functions:

Corollary 3. η2(Ωµ) =
π

π + 2µ
.

Combining this with (4) we get

Corollary 4. CΩµ ≥
√

1 +
2µ

π
− 1.
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It would be interesting to compute CΩµ precisely.

We conjecture that, similarly as in the case of worm domains, for bounded pseudo-
convex domains with smooth boundary the DF indices for smooth defining functions
and for psh defining functions are always the same.

The paper is organized as follows. Theorem 1 is proved in Section 2. In Section 3
we analyze C3 defining functions for worm domains, in particular we obtain a different,
more direct proof of the formula for the DF index of worm domains from [10]. Finally,
we prove Theorem 2 in Section 4.

Acknowledgements. This paper was written during the author’s stay at the University
of Maryland during the academic year 2024/25. He is grateful to the Department of
Mathematics, in particular to Yanir Rubinstein and Tamás Darvas, for the invitation,
great hospitality and very inspiring mathematical environment in College Park.

2. DF Exponents for Smooth Domains

In order to present a complete proof of the existence of DF exponents we start with
a proof of the crucial estimate (2) repeating the arguments from [2]. Pseudoconvexity
implies that − log δ is psh, where δ is given by (3), that is

(6) δδww̄ ≤ |δw|2

near the boundary. For a fixed point in Ω near ∂Ω and w ∈ Cn we write w = w′ + w′′,
where w′ is tangent to the level set of δ at this point and w′′ is normal to it. By (6) we
have δw′w′ ≤ 0 and

δww̄ ≤ 2Re δw′w′′ + δw′′w′′ ≤ C1|w′′| |w|.
Since

|δw| = |δw′′ | ≥ 1

C2

|w′′|,

we get (2).

Proof of Theorem 1. We may assume that z0 = 0. Take a, b > 0 with a > 0, 0 < b < 1.
For the function

u := −e−a|z|2δb

we can compute

uw =
[
aδ⟨z, w⟩ − bδw

]
e−a|z|2δb−1

and, with C given by (2),

uww̄e
a|z|2δ2−b = 2abδRe (δw⟨z, w⟩) + aδ2|w|2 − bδδww̄ − a2δ2|⟨z, w⟩|2 + b(1− b)|δw|2

≥ −2abRδ|δw||w|+ aδ2|w|2 − Cbδ|δw||w| − a2R2δ2|w|2 + b(1− b)|δw|2

= a(1− aR2)δ2|w|2 − b(2aR + C)δ|δw||w|+ b(1− b)|δw|2.
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This is nonnegative provided that

4a(1− b)(1− aR2)− b(2aR + C)2 ≥ 0.

This means that for any a between 0 and 1/R2

b =
4a(1− aR2)

4a(1 + CR) + C2

is a DF exponent for Ω. The maximum is attained for

a =
C

2R(1 + CR)
,

then

b =
1

(1 + CR)2
.

□

3. C3 Defining Functions in Worm Domains

In this section we study DF exponents for C3 defining functions in the worm domain
Ωµ. Consider the special C∞ defining function for Ωµ:

(7) ρ =
∣∣z1 − ei log |z2|

∣∣2 − 1 + η(log |z2|)

If ρ̃ is a C3 defining function for Ωµ then it is the form ρ̃ = h̃ρ, where h̃ ∈ C2(Ω),

h̃ > 0. We want to analyze when −(−ρ̃)b is psh, that is when functions of the form
v = −h(−ρ)b are psh for h ∈ C2(Ω), h > 0.

We will work with variables z = z1, t = log |z2|. Without loss of generality we may
assume that h is radially symmetric in z2, otherwise replace it with the average over
circles {|z2| = r}. We may write

(8) ρ = |z − eit|2 − 1 + η(t) = |z|2 − 2Re (eitz̄) + η(t).

We then have

(9)
ρz = z̄ − e−it, ρzz̄ = 1, ρzt = ie−it,

ρt =2Im (eitz̄) + η′, ρtt = 2Re (eitz̄) + η′′.

With v = −h(−ρ)b we can compute

(10)

vzz̄ = (−ρ)b−2
[
−hzz̄ρ

2 − 2bρRe (hzρz̄)− bhρρzz̄ + b(1− b)h|ρz|2
]
,

vzt = (−ρ)b−1

[
ρhzt + bhzρt + bhtρz + bhρzt − b(1− b)hρz

ρt
ρ

]
,

vtt = (−ρ)b
[
−htt − 2bht

ρt
ρ
− bh

ρtt
ρ

+ b(1− b)h
ρ2t
ρ2

]
.

Using (9) we see that ρz → −e−it, ρt → 0 and −ρtt/ρ = −(|z|2 − ρ + η′′)/ρ → 1 as
a sequence of points from Ωµ converges to (0, t) ∈ {0} × [−µ, µ] ⊂ ∂Ωµ. If we assume
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in addition that ρt/ρ → 0 (for example for points of the form (εeit, t), as in [3]) we will
obtain

Proposition 5. For v = −h(−ρ)b, where h ∈ C2(Ωµ), b > 0, and ρ given by (8) we
have

(11) lim inf
[
(vzz̄vtt − |vzt|2)(−ρ)2−2b

]
≤ b

[
−(1− b)hhtt − bh2

t − b2h2
]

for any sequence of points in Ωµ converging to (0, t) ∈ ∂Ωµ. □

In fact, using that the coefficient in the determinant at ρ2t/ρ
2, equal to

b(1− b)h(−ρ)2−bvzz̄ − b2(1− b)2h2|ρz|2 = b(1− b)h(−ρ)
[
bh+ hzz̄ρ+ 2bRe (hzρz̄)

]
,

is positive in Ωµ near [−µ, µ]×{0} but converges to 0 there, one can show that we have
equality in (11).

Now let h be independent of z. We assume that 0 < b ≤ 1 and work for t ∈ [−µ, µ],
so that η = η′ = η′′ = 0. Using (9) and (10) we get

vzz̄(−ρ)2−b/bh = −ρρzz̄ + (1− b)|ρz|2 = −ρ+ (1− b)(1− ρ) =: A ≥ 0,

vzt(−ρ)2−b/b = −ρρzht − ρhρzt + (1− b)hρzρt,

vtt(−ρ)2−b = −ρ2htt − bρhρtt − 2bρhtρt + b(1− b)hρ2t .

Since |ρz|2 = 1− ρ, 2Re (ρztρz̄) = ρt and |ρzt|2 = 1, we can compute that

|vzt|2(−ρ)2b−4/b2 = (1− b)h2ρ2tA− ρhρtht(2A+ ρ)

+ ρ2h2 + b2(1− ρ)ρ2h2
t .

Therefore,

(vzz̄vtt − |vzt|2)(−ρ)2−2b/b = −Ahhtt − b(1− ρ)h2
t + bh2

(
A
ρtt
−ρ

− 1

)
+ bhhtρt.

Using the inequalities

−ρtt/ρ = (ρ− |z|2)/ρ ≥ 1,

A ≥ (1− b)(1− ρ) ≥ 1− b(1− ρ)

we obtain

Proposition 6. For v = −h(−ρ)b, where h = h(t) ∈ C2([−µ, µ]), 0 < b ≤ 1 and ρ
given by (8) we have

(vzz̄vtt − |vzt|2)(−ρ)2−2b/b ≥ (1− ρ)
[
−(1− b)hhtt − bh2

t − b2h2
]
+ bhhtρt

in

{(z, t) ∈ Ωµ : − µ ≤ t ≤ µ}. □

We can give a prove of the following result essentially proved by Liu [10]:
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Theorem 7. For the worm domain Ωµ the set of all DF exponents for C3 defining
functions in Ωµ is the open interval (0, π/(π + 2µ)).

Proof. First assume that b is the DF exponent for Ωµ for a C3 defining function. This
means that for some h ∈ C2(Ωµ), h > 0, the function v = −h(−ρ)b is psh Ωµ, where ρ is
given by (7). We may assume that h is radially symmetric with respect to z2 (otherwise
replace it by the appriopriate average) and work in variables (z, t). By Proposition 5
on {0} × [−µ, µ] we have

(12) −(1− b)hhtt − bh2
t − b2h2 ≥ 0.

This is impossible for b = 1, we may thus assume that b < 1. With χ = (log h)t/b we
see that (12) is equivalent to

χt ≤ − b

1− b
(1 + χ2)

that is

(tan−1 χ)t ≤ − b

1− b
.

Since tan−1 χ : [−µ, µ] → [−π/2, π/2], it follows that µb/(1 − b) ≤ π/2. To exclude
the equality case, we see that then on [−µ, µ] we would have χ = − tan(at), where
a = b/(1− b) = π/2µ, and h(0, t) = c cos1/a(at) for some c > 0. This would contradict
the condition h > 0, hence b < π/(π + 2µ). We have thus proved that if b is the DF
exponent for Ωµ then b < π/(π + 2µ).

Now assume that 0 < b < π/(π + 2µ) and let ã be such that b/(1 − b) =: a <
ã < π/2µ. Using the fact that for h(t) = cos1/ã(ãt) we have equality in (12), one can
easily show that for h(t) = cos1/a(ãt) we have strict inequality in (12) on [−µ, µ]. By
Proposition 6 the function v = −h(−ρ)b is psh near [−µ, µ] × {0} and the regularized
maximum ρ̃ of h1/bρ, ρ and −ε for small ε > 0 is a C∞ defining function for Ωµ such
that −(−ρ̃)b is psh. □

4. Psh Defining Functions in Worm Domains

Proof of Theorem 2. As explained in the introduction, it is enough to analyze the pluri-
complex Green function at some pole. Without loss of generality we may thus assume
that u is the Green function for Ωµ with pole at (1, 1). For α = 2µ/π consider the
complex disk in Ωµ

φ(ζ) =
(
ei(α+1)ζ , eαζ

)
.

It is defined in

U =
{
ζ ∈ C : |Re ζ| < π/2,

∣∣ei(α+1)ζ−iαRe ζ − 1
∣∣ < 1

}
= {ζ ∈ C : |Re ζ| < π/2, (α + 1)Im ζ > − log

(
2 cos(Re ζ)

)
}.
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We then have u ◦ φ ≤ GU(·, 0), the Green function for U with pole at 0. The function
eiζ biholomorphically maps the strip {|Re ζ| < π/2} to the halfplane {Re z > 0}. If
z = eiζ then |z| = e−Im ζ and Re z = |z| cos(Re ζ). Therefore

{Re z > 0} ⊃ {eiζ : ζ ∈ U} = {z ∈ C : |z|α+2 < 2Re z} ⊃ {|z − ρ| < ρ},

where ρ = 2−α/(α+1) > 1/2 (see fig. below for α = 1.5).

0.0 0.5 1.0 1.5 2.0
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0.0
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Comparing the Green functions at the origin for the preimages by the mapping eiζ

of the half-plane and the inscribed disk we will obtain

log

∣∣∣∣1− eiζ

1 + eiζ

∣∣∣∣ ≤ GU(ζ, 0) ≤ log

∣∣∣∣ 1− eiζ

1 + (1− 1/ρ)eiζ

∣∣∣∣ .
For ζ = iy, y > 0, we get

u(e−(α+1)y, eiαy) ≤ log

∣∣∣∣ 1− e−y

1 + (1− 1/ρ)e−y

∣∣∣∣ .
This means that for tk := e−2πk(α+1)/α → 0 as k → ∞

u(tk, 1) ≤ log

∣∣∣∣∣ 1− t
1/(α+1)
k

1 + (1− 1/ρ)t
1/(α+1)
k

∣∣∣∣∣ .
Therefore, if |u| ≤ CδbΩµ

near the boundary then b ≤ 1/(α + 1) = π/(π + 2µ). □
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